cedar mountain formation
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 91 (11) ◽  
pp. 1188-1205
Author(s):  
Stephen P. Phillips ◽  
John A. Howell ◽  
Adrian J. Hartley ◽  
Magda Chmielewska

ABSTRACT The analysis of downstream changes in ancient fluvial systems can better inform depositional models for foreland-basin systems. Herein we analyze the basal deposits of the Early Cretaceous Cedar Mountain Formation of Utah to better understand the variety of fluvial deposits present and to develop a depositional model for the Sevier foreland basin. We also evaluate the long-held interpretation of a braided origin for these deposits and document numerous examples of point-bar deposition in highly sinuous meandering rivers by analysis of large (20 to 60 km2) plan-view exposures. These plan-view exposures allow comparisons between planform and cross-sectional geometries. The study utilizes outcrop data, virtual outcrop models, and satellite imagery to develop a facies model and analyze the architecture of channel bodies in the Buckhorn Conglomerate and Poison Strip Sandstone of the Cedar Mountain Formation. We document downstream (west to east) decreases in lateral channel migration, sinuosity, channel amalgamation, grain size, and percent of fluvial channel facies (conglomerate and sandstone). Fluvial channel deposits occur arranged into larger stratal bodies: multistory–multilateral channel bodies that are dominantly composed of clast-supported conglomerate in the west to a mix of multistory, multilateral, and isolated channel bodies composed of matrix-supported conglomerate in the east. The median width of highly sinuous point bars is similar across the field area (344 m to 477 m), but the inclusion of narrower (median = 174 m), low-sinuosity bar elements in the east indicates an overall reduction in lateral channel migration and sinuosity downstream. Net-to-gross values range from 100% in much of the western outcrops to as low as 38% in the east. Paleocurrent analysis reveals a transverse (west to east) paleoflow for the study interval that merges with axial (south–north) paleoflow near the Utah–Colorado state line. We estimate 104 m3/s-scale discharge and 106 kilometer-scale drainage area for axial rivers based on paleohydraulic analysis which represents a significant part of the Early Cretaceous continental-scale drainage. The observed downstream trends in lateral channel migration, sinuosity, channel amalgamation, grain size, and net-to-gross for the basal Cedar Mountain Formation are consistent with expected trends for sinuous single-thread distributive fluvial systems and are similar to observed trends in the Jurassic Morrison Formation. Medial (Buckhorn Conglomerate) to distal (Poison Strip Sandstone) zones are preserved and span the forebulge to backbulge depozones of a foreland-basin system. Postulated deposits of the proximal distributive fluvial system have been removed during erosion of the foredeep depozone. The easternmost Poison Strip Sandstone and coeval Burro Canyon Formation represent deposits of an axial system at which western-sourced distributive fluvial systems end. Distributive fluvial systems dominate modern foreland basins, and this study suggests that they may constitute a significant proportion of ancient successions.


2021 ◽  
Vol 56 (1) ◽  
pp. 19-36
Author(s):  
Clay Robertson ◽  
Greg A. Ludvigson ◽  
R.M. Joeckel ◽  
Sahar Mohammadi ◽  
James I. Kirkland

ABSTRACT Previously published anomalous whole-rock stable isotopic values from the Poison Strip Sandstone Member of the Cretaceous Cedar Mountain Formation (CMF) of eastern Utah are of uncertain origins. This study investigated the diagenetic history and the processes responsible for these anomalous data. Accordingly, we integrated photomicroscopic techniques including polarized light microscopy, epifluorescence and cathodoluminescence (CL) imaging, micromilling of stable isotope samples, and fluid-inclusion heating and freezing measurements to this end. The key observations involved the microscopic mapping of calcite cement stratigraphy using CL imaging to permit the analysis of stable isotopes of calcite cements that crystallized during early and late diagenesis. The mapping of calcite cement zones of sufficient submillimeter size to mill out and isolate microgram-sized stable isotope samples enabled this discrimination. Early diagenetic calcite cements have the most positive δ18O values (-10 to -8.5‰ Vienna Pee Dee Belemnite [VPDB]) of all components. The pattern of δ13C and δ18O variation in this early diagenetic cement indicates affinities with early meteoric diagenesis previously documented in published literature on the CFM. The late diagenetic calcite cements yield the most negative δ18O values (-18 to -16‰ VPDB). We interpret the late diagenetic cements to be responsible for the anomalously low whole-rock δ18O values previously reported from the Poison Strip Sandstone Member. Our discoveries of bitumen in late-stage pore fillings and liquid petroleum in the fluid inclusions of late diagenetic calcite cements of the Poison Strip Sandstone Member explain the lower whole-rock organic matter δ13C values and anomalous Δ13C values reported from the unit. Comparatively lower carbonate δ18O and organic δ13C values originally derived from whole-rock analyses of samples from the Poison Strip Sandstone Member resulted from high-temperature basinal diagenesis (hydrothermal circulation and/or petroleum migration), rather than the alternative interpretation of early diagenesis related to a Cretaceous paleoclimatic perturbation. Our results are illustrative of methods to resolve the long-standing geologic problem of discriminating and characterizing products of early vs. late diagenesis in terrigenous clastic sedimentary strata.


2020 ◽  
pp. SP507-2020-85 ◽  
Author(s):  
M. B. Suarez ◽  
J. A. Knight ◽  
A. Godet ◽  
G. A. Ludvigson ◽  
K. E. Snell ◽  
...  

Sedimentology ◽  
2020 ◽  
Vol 67 (7) ◽  
pp. 3655-3682 ◽  
Author(s):  
Benjamin T. Cardenas ◽  
David Mohrig ◽  
Timothy A. Goudge ◽  
Cory M. Hughes ◽  
Joseph S. Levy ◽  
...  

2020 ◽  
Author(s):  
Jacquelin Diane Lee ◽  
◽  
Andreas Möller ◽  
G.A. Ludvigson ◽  
Marina B. Suarez ◽  
...  

2019 ◽  
Vol 498 (1) ◽  
pp. 75-100 ◽  
Author(s):  
R. M. Joeckel ◽  
G. A. Ludvigson ◽  
A. Möller ◽  
C. L. Hotton ◽  
M. B. Suarez ◽  
...  

AbstractThis paper presents breakthroughs in the chronostratigraphy of the heretofore poorly constrained Yellow Cat Member of the Cedar Mountain Formation, which is an important record of terrestrial environments, ecosystems and global change in the ancient North American Cordilleran foreland. Zircon populations from 10 stratigraphic horizons in the Yellow Cat Member yield youngest single-grain ages ranging from 142.5 ± 2.7 to 133.7 ± 2.7 Ma (Berriasian–late Valanginian); those from one mudstone palaeosol yield a robust Concordia Age of 136.3 ± 1.3 (Valanginian). Additionally, a new palynoflora – one of a few to be published from the Cedar Mountain Formation – is assigned to the middle Berriasian to early Hauterivian stages, based on the presence of Foraminisporis wonthaggiensis and Trilobosporites sp. cf. T. canadensis, and the absence of F. asymmetricus, Appendicisporites spp. and angiosperms. Furthermore, these chronostratigraphic data allow us to interpret part of the so-called ‘Weissert Event’ C-isotope excursion (Valanginian) in a new C-isotope profile through a palaeosol-bearing alluvial succession in the Yellow Cat Member. This research extends a firm understanding of the formation further back into the Early Cretaceous than was the case previously (except for ostracod biostratigraphy) and sets the stage for future advancements.


2019 ◽  
Author(s):  
Benjamin Cardenas ◽  
David Mohrig ◽  
Timothy Goudge ◽  
Cory Hughes ◽  
Joseph Levy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document