seafloor spreading
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 60)

H-INDEX

48
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alexander L. Peace ◽  
Jordan J.J. Phethean

ABSTRACT It is well established that plate-tectonic processes operate on a global scale and that spatially separate but temporally coincident events may be linked. However, identifying such links in the geological record and understanding the mechanisms involved remain speculative. This is particularly acute during major geodynamic events, such as the dispersal of supercontinents, where multiple axes of breakup may be present as well as coincidental collisional events. To explore this aspect of plate tectonics, we present a detailed analysis of the temporal variation in the mean half rate of seafloor spreading in the Indian and Atlantic Oceans, as well as plate-kinematic attributes extracted from global plate-tectonic models during the dispersal of Gondwana since ca. 200 Ma. Our analysis shows that during the ~20 m.y. prior to collision between India and Asia at ca. 55 Ma, there was an increase in the mean rate of seafloor spreading in the Indian Ocean. This manifests as India rapidly accelerating toward Asia. This event was then followed by a prompt deceleration in the mean rate of Indian Ocean seafloor spreading after India collided with Asia at ca. 55 Ma. Since inception, the mean rate of seafloor spreading in the Indian Ocean has been generally greater than that in the Atlantic Ocean, and the period of fastest mean half spreading rate in the Indian Ocean was coincident with a slowdown in mean half seafloor spreading rate in the competing Atlantic Ocean. We hypothesize that faster and hotter seafloor spreading in the Indian Ocean resulted in larger ridge-push forces, which were transmitted through the African plate, leading to a slowdown in Atlantic Ocean spreading. Following collision between India and Asia, and a slowdown of Indian Ocean spreading, Atlantic spreading rates consequently increased again. We conclude that the processes in the Indian and Atlantic Oceans have likely remained coupled throughout their existence, that their individual evolution has influenced each other, and that, more generally, spreading in one basin inevitably influences proximal regions. While we do not believe that ridge push is the main cause of plate motions, we consider it to have played a role in the coupling of the kinematic evolution of these oceans. The implication of this observation is that interaction and competition between nascent ocean basins and ridges during supercontinent dispersal exert a significant control on resultant continental configuration.


2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>The Macquarie Ridge Complex (MRC) forms the submarine expression of the Australia‐Pacific plate boundary south of New Zealand, comprising a rugged bathymetry made up of numerous seamounts along its length. Tectonic plate reconstructions show that the plate boundary evolved from divergent to transpressional relative plate motion from ca. 40 – 6 Ma. However, only limited geological observation of the products of past seafloor spreading and present transpressional deformation has been achieved. This study presents new high-resolution multibeam, photographic, petrologic and geochemical data for 10 seamounts located along the MRC in order to elucidate the current nature and evolution of the plate boundary. Seamounts are oriented parallel to the plate boundary, characterized by elongate forms, and deformed by transform faulting. Three guyot‐type seamounts display summit plateaux that were formed by wave and current erosion. MRC seafloor is composed of alkaline to sub‐alkaline basaltic pillow, massive and sheet lava flows, lava talus, volcaniclastic breccia, diabase and gabbro. This oceanic crust was formed during effusive mid‐ocean ridge volcanism at the relic Macquarie spreading centre and has since been sheared, accreted and exhumed along the modern transpressional plate boundary. Major element systematics indicate samples originated from spatially distinct magmatic sources and have since been juxtaposed at seamounts due to transpressional relative plate motion. MRC seamounts have formed as discrete elevations as a result of dip‐slip and strike‐slip faulting of the ridge axis. Thus, MRC seamounts are volcanic in origin but are now the morphological manifestations of tectonic and geomorphic processes. Petrologic and geochemical characteristics of volcanic glass samples from the MRC indicate that both effusive and explosive eruption styles operated at the relic Macquarie spreading centre. Primitive and sub‐alkaline to transitional basaltic magma that rose efficiently to the seafloor was erupted effusively and cooled to form lava flows with low vesicle and phenocryst contents or was granulated on contact with seawater to form hyaloclasts deposited in volcaniclastic breccias. More alkaline magmas that underwent crystal fractionation and volatile exsolution in shallow reservoirs were fragmented and erupted during submarine hawaiian‐type eruptions. Such a scenario is likely to have occurred during the final stages of magmatism at the Australia‐Pacific plate boundary south of New Zealand when seafloor spreading was ultraslow or had ceased, which induced low degrees of partial melting and retarded magma ascent rates. All MRC samples display enriched mid‐ocean ridge basalt (E‐MORB) trace element characteristics. The sample suite can be divided into two groups, with Group 1 samples distinguished from Group 2 samples by their lower concentrations of highly incompatible trace elements, flatter LREE slopes, higher MgO contents and lower alkali element contents. Group 1 basalts were derived from low degree partial melting of spinel lherzolite generated during the late stages of mid‐ocean ridge volcanism at the plate boundary when seafloor spreading rates were slow to ultraslow (full spreading rate < 20 mm yr⁻¹). Group 2 basalts were derived from low degree partial melting of spinel lherzolite, mixed with small amounts of very low degree partial melting of garnet lherzolite, during post‐spreading volcanism at the MRC. Remnant heat from previous seafloor spreading induced buoyant ascent of the sub‐ridge mantle and enriched heterogeneities were preferentially tapped by the ensuing low melt fractions. Magma ascent was stalled due to the cessation of extension at the ridge and the melts underwent crystal fractionation prior to eruption, which accounts for the lower MgO contents of Group 2 basalts. The pervasive incompatible element‐enrichment of MRC basalts and similarity to lavas from fossil spreading ridges in the eastern Pacific Ocean may reflect regional enrichment of the Pacific upper mantle.</p>


2021 ◽  
Author(s):  
◽  
Christopher Edward Conway

<p>The Macquarie Ridge Complex (MRC) forms the submarine expression of the Australia‐Pacific plate boundary south of New Zealand, comprising a rugged bathymetry made up of numerous seamounts along its length. Tectonic plate reconstructions show that the plate boundary evolved from divergent to transpressional relative plate motion from ca. 40 – 6 Ma. However, only limited geological observation of the products of past seafloor spreading and present transpressional deformation has been achieved. This study presents new high-resolution multibeam, photographic, petrologic and geochemical data for 10 seamounts located along the MRC in order to elucidate the current nature and evolution of the plate boundary. Seamounts are oriented parallel to the plate boundary, characterized by elongate forms, and deformed by transform faulting. Three guyot‐type seamounts display summit plateaux that were formed by wave and current erosion. MRC seafloor is composed of alkaline to sub‐alkaline basaltic pillow, massive and sheet lava flows, lava talus, volcaniclastic breccia, diabase and gabbro. This oceanic crust was formed during effusive mid‐ocean ridge volcanism at the relic Macquarie spreading centre and has since been sheared, accreted and exhumed along the modern transpressional plate boundary. Major element systematics indicate samples originated from spatially distinct magmatic sources and have since been juxtaposed at seamounts due to transpressional relative plate motion. MRC seamounts have formed as discrete elevations as a result of dip‐slip and strike‐slip faulting of the ridge axis. Thus, MRC seamounts are volcanic in origin but are now the morphological manifestations of tectonic and geomorphic processes. Petrologic and geochemical characteristics of volcanic glass samples from the MRC indicate that both effusive and explosive eruption styles operated at the relic Macquarie spreading centre. Primitive and sub‐alkaline to transitional basaltic magma that rose efficiently to the seafloor was erupted effusively and cooled to form lava flows with low vesicle and phenocryst contents or was granulated on contact with seawater to form hyaloclasts deposited in volcaniclastic breccias. More alkaline magmas that underwent crystal fractionation and volatile exsolution in shallow reservoirs were fragmented and erupted during submarine hawaiian‐type eruptions. Such a scenario is likely to have occurred during the final stages of magmatism at the Australia‐Pacific plate boundary south of New Zealand when seafloor spreading was ultraslow or had ceased, which induced low degrees of partial melting and retarded magma ascent rates. All MRC samples display enriched mid‐ocean ridge basalt (E‐MORB) trace element characteristics. The sample suite can be divided into two groups, with Group 1 samples distinguished from Group 2 samples by their lower concentrations of highly incompatible trace elements, flatter LREE slopes, higher MgO contents and lower alkali element contents. Group 1 basalts were derived from low degree partial melting of spinel lherzolite generated during the late stages of mid‐ocean ridge volcanism at the plate boundary when seafloor spreading rates were slow to ultraslow (full spreading rate < 20 mm yr⁻¹). Group 2 basalts were derived from low degree partial melting of spinel lherzolite, mixed with small amounts of very low degree partial melting of garnet lherzolite, during post‐spreading volcanism at the MRC. Remnant heat from previous seafloor spreading induced buoyant ascent of the sub‐ridge mantle and enriched heterogeneities were preferentially tapped by the ensuing low melt fractions. Magma ascent was stalled due to the cessation of extension at the ridge and the melts underwent crystal fractionation prior to eruption, which accounts for the lower MgO contents of Group 2 basalts. The pervasive incompatible element‐enrichment of MRC basalts and similarity to lavas from fossil spreading ridges in the eastern Pacific Ocean may reflect regional enrichment of the Pacific upper mantle.</p>


2021 ◽  
Vol 574 ◽  
pp. 117173
Author(s):  
Justin Estep ◽  
Bobby Reece ◽  
Gail L. Christeson ◽  
Dominik A. Kardell ◽  
Richard L. Carlson

2021 ◽  
Vol 9 ◽  
Author(s):  
Morgane Gillard ◽  
Sylvie Leroy ◽  
Mathilde Cannat ◽  
Heather Sloan

In this paper we present and analyze spreading-parallel seismic transects that image the oceanic crust in the eastern Gulf of Aden, from the Oman to the Socotra margins, across the active Sheba mid-oceanic ridge and between the Socotra-Hadbeen and Eastern Gulf of Aden Fracture Zones. The correlation of potential field data sets and gravity modelling allow us to document the spreading history of this oceanic basin from the onset of seafloor spreading ∼16 Ma-ago to the present. Two main oceanic sub-domains display distinct structural characteristics associated with different magmatic budgets at this mid-ocean ridge. In addition, we document the occurrence of a magmatic pulse at the Sheba Ridge around 11 Ma leading to the construction of a magmatic plateau in the western part of the studied area. This event led to substantial deformation and additional magmatism in previously formed oceanic crust. It could be related to an off-axis magmatic event previously identified in the adjacent Sheba segment, itself possibly related to the Afar plume.


2021 ◽  
pp. 105255
Author(s):  
Yonglin Wen ◽  
Chun-Feng Li ◽  
Lijie Wang ◽  
Yutao Liu ◽  
Xi Peng ◽  
...  

2021 ◽  
Vol 40 (2) ◽  
pp. 538-565
Author(s):  
BENTO CAVADAS

Plate tectonics caused a revolution within earth sciences which then was transposed into science textbooks. The main objective of this paper is to explore how plate tectonics influenced Portuguese and Spanish science textbooks published from the 1960s through the 1980s. For this purpose, a qualitative method based on the concept of didactic transposition is used. The didactic transposition of seafloor spreading evidence such as ridges, rifts and trenches, transform faults, seafloor sediments, the age of seafloor basaltic rocks, the magnetic anomalies on the seafloor, the Benioff zones and the subduction process, and also the didactic transposition of the formation of mountains ranges and island arcs, convection currents, plate tectonics concepts, boundaries and motion, and plate tectonics acceptance are studied in a comprehensive sample of science textbooks. The analysis of textbooks shows that the didactic transposition of seafloor spreading, and plate tectonics started mainly in 1970s Portuguese and Spanish textbooks and had a strong development in 1980s textbooks. No major differences were found between the approaches to plate tectonics in similar age Portuguese and Spanish textbooks. At the beginning of the 1970s, textbooks presented partial evidence for seafloor spreading, such as magnetic anomalies and the characteristics of ridges, rifts and trenches. They also addressed convection currents but only those that were related to geosynclines. In the mid 1970s and in the 1980s, textbooks presented more comprehensive evidence of seafloor spreading, by adding didactical transpositions of transform faults, seafloor sediments and the age of seafloor rocks. They also presented in more detail topics such as magnetic anomalies, the Benioff zones, orogenic processes and the tectonic significance of ridges, rifts and trenches. Plate tectonic theory was presented in major textbooks as widely accepted, and discussions about speculative facts or processes were rare.


2021 ◽  
Author(s):  
Craig Magee ◽  
Matthew Reeve ◽  
Chris Jackson ◽  
Rebecca Bell ◽  
Ian Bastow

Continental breakup involves a transition from rapid, fault-controlled syn-rift subsidence to relatively slow, post-breakup subsidence induced lithospheric cooling. Yet the stratigraphic record of many rifted margins contain syn-breakup unconformities, indicating episodes of uplift and erosion interrupt this transition. This uplift has been linked to mantle upwelling, depth-dependent extension, and/or isostatic rebound. Deciphering the breakup processes recorded by these unconformities and their related rock record is difficult because associated erosion commonly removes the strata that help constrain the onset and duration of uplift. We examine three major breakup-related unconformities and intervening rock record in the Lower Cretaceous succession of the Gascoyne and Cuvier margins, offshore NW Australia, using seismic reflection and borehole data. These data show the breakup unconformities are disconformable (non-erosive) in places and angular (erosive) in others. Our recalibration of palynomorph ages from rocks underlying and overlying the unconformities shows: (i) the lowermost unconformity developed between 134.98–133.74 Ma (Intra-Valanginian), probably during the localisation of magma intrusion within continental crust and consequent formation of continent-ocean transition zones (COTZ); (2) the middle unconformity formed between ~134–133 Ma (Top Valanginian), possibly coincident with breakup of continental crust and generation of new magmatic (but not oceanic) crust within the COTZs; and (iii) the uppermost unconformity likely developed between ~132.5–131 Ma (i.e. Intra-Hauterivian), coincident with full breakup of continental lithosphere and the onset of seafloor spreading. During unconformity formation, uplift was focused along the continental rift flanks, likely reflecting landward flow of lower crustal and/or lithospheric mantle from beneath areas of localised extension towards the continent (i.e. depth-dependent extension). Our work supports the growing consensus that the ‘breakup unconformity’ is not always a single stratigraphic surface marking the onset of seafloor spreading; multiple unconformities may form and reflect a complex history of uplift and subsidence during the development of continent-ocean transition.


Sign in / Sign up

Export Citation Format

Share Document