Improved interaural timing of acoustic nerve stimulation affects sound localization in single-sided deaf cochlear implant users

2019 ◽  
Vol 371 ◽  
pp. 19-27 ◽  
Author(s):  
J. Seebacher ◽  
A. Franke-Trieger ◽  
V. Weichbold ◽  
P. Zorowka ◽  
K. Stephan
Author(s):  
Iris Burck ◽  
Rania A. Helal ◽  
Nagy N. N. Naguib ◽  
Nour-Eldin A. Nour-Eldin ◽  
Jan-Erik Scholtz ◽  
...  

Abstract Objectives To correlate the radiological assessment of the mastoid facial canal in postoperative cochlear implant (CI) cone-beam CT (CBCT) and other possible contributing clinical or implant-related factors with postoperative facial nerve stimulation (FNS) occurrence. Methods Two experienced radiologists evaluated retrospectively 215 postoperative post-CI CBCT examinations. The mastoid facial canal diameter, wall thickness, distance between the electrode cable and mastoid facial canal, and facial-chorda tympani angle were assessed. Additionally, the intracochlear position and the insertion angle and depth of electrodes were evaluated. Clinical data were analyzed for postoperative FNS within 1.5-year follow-up, CI type, onset, and causes for hearing loss such as otosclerosis, meningitis, and history of previous ear surgeries. Postoperative FNS was correlated with the measurements and clinical data using logistic regression. Results Within the study population (mean age: 56 ± 18 years), ten patients presented with FNS. The correlations between FNS and facial canal diameter (p = 0.09), wall thickness (p = 0.27), distance to CI cable (p = 0.44), and angle with chorda tympani (p = 0.75) were statistically non-significant. There were statistical significances for previous history of meningitis/encephalitis (p = 0.001), extracochlear-electrode-contacts (p = 0.002), scala-vestibuli position (p = 0.02), younger patients’ age (p = 0.03), lateral-wall-electrode type (p = 0.04), and early/childhood onset hearing loss (p = 0.04). Histories of meningitis/encephalitis and extracochlear-electrode-contacts were included in the first two steps of the multivariate logistic regression. Conclusion The mastoid-facial canal radiological assessment and the positional relationship with the CI electrode provide no predictor of postoperative FNS. Histories of meningitis/encephalitis and extracochlear-electrode-contacts are important risk factors. Key Points • Post-operative radiological assessment of the mastoid facial canal and the positional relationship with the CI electrode provide no predictor of post-cochlear implant facial nerve stimulation. • Radiological detection of extracochlear electrode contacts and the previous clinical history of meningitis/encephalitis are two important risk factors for postoperative facial nerve stimulation in cochlear implant patients. • The presence of scala vestibuli electrode insertion as well as the lateral wall electrode type, the younger patient’s age, and early onset of SNHL can play important role in the prediction of post-cochlear implant facial nerve stimulation.


Author(s):  
K.A. Gordon ◽  
S.L. Cushing ◽  
S.F. Jewell ◽  
J. Valero ◽  
A. Gordin ◽  
...  

2006 ◽  
Vol 27 (7) ◽  
pp. 918-922 ◽  
Author(s):  
Rolf Battmer ◽  
Joerg Pesch ◽  
Timo St??ver ◽  
Anke Lesinski-Schiedat ◽  
Minoo Lenarz ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jantien L. Vroegop ◽  
J. Gertjan Dingemanse ◽  
Marc P. van der Schroeff ◽  
André Goedegebure

PurposeThe aim of the study was to investigate the effect of 3 hearing aid fitting procedures on provided gain of the hearing aid in bimodal cochlear implant users and their effect on bimodal benefit.MethodThis prospective study measured hearing aid gain and auditory performance in a cross-over design in which 3 hearing aid fitting methods were compared. Hearing aid fitting methods differed in initial gain prescription rule (NAL-NL2 and Audiogram+) and loudness balancing method (broadband vs. narrowband loudness balancing). Auditory functioning was evaluated by a speech-in-quiet test, a speech-in-noise test, and a sound localization test. Fourteen postlingually deafened adult bimodal cochlear implant users participated in the study.ResultsNo differences in provided gain and in bimodal performance were found for the different hearing aid fittings. For all hearing aid fittings, a bimodal benefit was found for speech in noise and sound localization.ConclusionOur results confirm that cochlear implant users with residual hearing in the contralateral ear substantially benefit from bimodal stimulation. However, on average, no differences were found between different types of fitting methods, varying in prescription rule and loudness balancing method.


Author(s):  
Michal Luntz ◽  
Alexander Brodsky ◽  
Hava Hafner ◽  
Thalma Shpak ◽  
Hava Feiglin ◽  
...  

Author(s):  
Snandan Sharma ◽  
Waldo Nogueira ◽  
A. John van Opstal ◽  
Josef Chalupper ◽  
Lucas H. M. Mens ◽  
...  

Purpose Speech understanding in noise and horizontal sound localization is poor in most cochlear implant (CI) users with a hearing aid (bimodal stimulation). This study investigated the effect of static and less-extreme adaptive frequency compression in hearing aids on spatial hearing. By means of frequency compression, we aimed to restore high-frequency audibility, and thus improve sound localization and spatial speech recognition. Method Sound-detection thresholds, sound localization, and spatial speech recognition were measured in eight bimodal CI users, with and without frequency compression. We tested two compression algorithms: a static algorithm, which compressed frequencies beyond the compression knee point (160 or 480 Hz), and an adaptive algorithm, which aimed to compress only consonants leaving vowels unaffected (adaptive knee-point frequencies from 736 to 2946 Hz). Results Compression yielded a strong audibility benefit (high-frequency thresholds improved by 40 and 24 dB for static and adaptive compression, respectively), no meaningful improvement in localization performance (errors remained > 30 deg), and spatial speech recognition across all participants. Localization biases without compression (toward the hearing-aid and implant side for low- and high-frequency sounds, respectively) disappeared or reversed with compression. The audibility benefits provided to each bimodal user partially explained any individual improvements in localization performance; shifts in bias; and, for six out of eight participants, benefits in spatial speech recognition. Conclusions We speculate that limiting factors such as a persistent hearing asymmetry and mismatch in spectral overlap prevent compression in bimodal users from improving sound localization. Therefore, the benefit in spatial release from masking by compression is likely due to a shift of attention to the ear with the better signal-to-noise ratio facilitated by compression, rather than an improved spatial selectivity. Supplemental Material https://doi.org/10.23641/asha.16869485


2016 ◽  
Vol 336 ◽  
pp. 72-82 ◽  
Author(s):  
Lidwien C.E. Veugen ◽  
Maartje M.E. Hendrikse ◽  
Marc M. van Wanrooij ◽  
Martijn J.H. Agterberg ◽  
Josef Chalupper ◽  
...  

Author(s):  
N. Verhaert ◽  
J.P. Bébéar ◽  
D.S. Lazard ◽  
D. Gnansia ◽  
Ph. Romanet ◽  
...  

2019 ◽  
Vol 23 ◽  
pp. 233121651984387 ◽  
Author(s):  
Stefan Zirn ◽  
Julian Angermeier ◽  
Susan Arndt ◽  
Antje Aschendorff ◽  
Thomas Wesarg

In users of a cochlear implant (CI) together with a contralateral hearing aid (HA), so-called bimodal listeners, differences in processing latencies between digital HA and CI up to 9 ms constantly superimpose interaural time differences. In the present study, the effect of this device delay mismatch on sound localization accuracy was investigated. For this purpose, localization accuracy in the frontal horizontal plane was measured with the original and minimized device delay mismatch. The reduction was achieved by delaying the CI stimulation according to the delay of the individually worn HA. For this, a portable, programmable, battery-powered delay line based on a ring buffer running on a microcontroller was designed and assembled. After an acclimatization period to the delayed CI stimulation of 1 hr, the nine bimodal study participants showed a highly significant improvement in localization accuracy of 11.6% compared with the everyday situation without the delay line ( p < .01). Concluding, delaying CI stimulation to minimize the device delay mismatch seems to be a promising method to increase sound localization accuracy in bimodal listeners.


Sign in / Sign up

Export Citation Format

Share Document