scholarly journals Biophysical and flavonoid-binding studies of the G protein ectodomain of group A human respiratory syncytial virus

Heliyon ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. e01394
Author(s):  
Vitor Brassolatti Machado ◽  
Jéssica Maróstica de Sá ◽  
Ana Karla Miranda Prado ◽  
Karina Alves de Toledo ◽  
Luis Octávio Regasini ◽  
...  
2015 ◽  
Vol 89 (15) ◽  
pp. 7776-7785 ◽  
Author(s):  
Alfonsina Trento ◽  
Leyda Ábrego ◽  
Rosa Rodriguez-Fernandez ◽  
Maria Isabel González-Sánchez ◽  
Felipe González-Martínez ◽  
...  

ABSTRACTWorldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged periods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Additionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection, despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are considered to account for the high degree of hRSV G-protein variability.IMPORTANCEAn unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynonymous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive selection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by murine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selection hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.


2009 ◽  
Vol 5 (1) ◽  
pp. e1000254 ◽  
Author(s):  
Viviane F. Botosso ◽  
Paolo M. de A. Zanotto ◽  
Mirthes Ueda ◽  
Eurico Arruda ◽  
Alfredo E. Gilio ◽  
...  

2005 ◽  
Vol 77 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Mónica C. Galiano ◽  
Vivian Luchsinger ◽  
Cristina M. Videla ◽  
Leila De Souza ◽  
Silvia Sánchez Puch ◽  
...  

2003 ◽  
Vol 84 (11) ◽  
pp. 3115-3120 ◽  
Author(s):  
Alfonsina Trento ◽  
Mónica Galiano ◽  
Cristina Videla ◽  
Guadalupe Carballal ◽  
Blanca García-Barreno ◽  
...  

2005 ◽  
Vol 79 (14) ◽  
pp. 9157-9167 ◽  
Author(s):  
Kalina T. Zlateva ◽  
Philippe Lemey ◽  
Elien Moës ◽  
Anne-Mieke Vandamme ◽  
Marc Van Ranst

ABSTRACT Human respiratory syncytial virus (HRSV) is the most important cause of acute respiratory disease in infants. Two major subgroups (A and B) have been identified based on antigenic differences in the attachment G protein. Antigenic variation between and within the subgroups may contribute to reinfections with these viruses by evading the host immune responses. To investigate the circulation patterns and mechanisms by which HRSV-B viruses evolve, we analyzed the G protein genetic variability of subgroup B sequences isolated over a 45-year period, including 196 Belgian strains obtained over 22 epidemic seasons (1982 to 2004). Our study revealed that the HRSV-B evolutionary rate (1.95 × 10−3 nucleotide substitutions/site/year) is similar to that previously estimated for HRSV-A (1.83 × 10−3 nucleotide substitutions/site/year). However, natural HRSV-B isolates appear to accommodate more drastic changes in their attachment G proteins. The most recent common ancestor of the currently circulating subgroup B strains was estimated to date back to around the year 1949. The divergence between the two major subgroups was calculated to have occurred approximately 350 years ago. Furthermore, we have identified 12 positively selected sites in the G protein ectodomain, suggesting that immune-driven selective pressure operates in certain codon positions. HRSV-A and -B strains have similar phylodynamic patterns: both subgroups are characterized by global spatiotemporal strain dynamics, where the high infectiousness of HRSV permits the rapid geographic spread of novel strain variants.


2006 ◽  
Vol 80 (21) ◽  
pp. 10465-10477 ◽  
Author(s):  
Antonius G. P. Oomens ◽  
Kevin P. Bevis ◽  
Gail W. Wertz

ABSTRACT The importance of the F protein cytoplasmic tail (CT) for replication of human respiratory syncytial virus (HRSV) was examined by monitoring the behavior of viruses expressing F proteins with a modified COOH terminus. The F protein mutant viruses were recovered and amplified under conditions where F protein function was complemented by expression of a heterologous viral envelope protein. The effect of the F protein modifications was then examined in the context of a viral infection in standard cell types (Vero and HEp-2). The F protein modifications consisted of a deletion of the predicted CT or a replacement of the CT with the CT of the vesicular stomatitis virus (VSV) G protein. In addition, engineered HRSVs that lacked all homologous glycoprotein genes (SH, G, and F) and expressed instead either the authentic VSV G protein or a VSV G containing the HRSV F protein CT were examined. We found that deletion or replacement of the F protein CT seriously impaired the production of infectious progeny. Cells infected with viruses bearing CT modifications displayed increased F protein surface expression and increased syncytium formation. The distribution of F protein in the plasma membrane of infected cells was altered, resulting in an F protein that was evenly distributed rather than localized predominantly to virus-induced surface filaments. CT deletion or exchange also abrogated interaction of F protein with Triton-insoluble lipid rafts. Addition of the F protein CT to the VSV G protein, expressed as the only viral glycoprotein in an HRSV genome, had the opposite effects: the number of infectious progeny was higher, the surface distribution was changed from relatively even to localized, and the proportion of VSV G protein associated with lipid rafts was higher. Together, these results show that the HRSV F protein CT plays a critical role in F protein cellular localization and production of infectious virus and suggest that the function provided by the CT is independent of the F protein ectodomain and transmembrane domain and is mediated by F protein-lipid raft interaction.


Sign in / Sign up

Export Citation Format

Share Document