scholarly journals Effective Zitterbewegung of bosonic Bogoliubov quasi-particle with effective spin-orbital coupling

Heliyon ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. e01532
Author(s):  
Qi Zhang
2019 ◽  
Vol 33 (8) ◽  
pp. 2375-2381 ◽  
Author(s):  
Wojciech Brzezicki ◽  
Filomena Forte ◽  
Canio Noce ◽  
Mario Cuoco ◽  
Andrzej M. Oleś

AbstractWe investigate the interplay between Coulomb-driven orbital order and octahedral distortions in strongly correlated Mott insulators due to orbital dilution, i.e., doping by metal ions without an orbital degree of freedom. In particular, we focus on layered transition metal oxides and study the effective spin–orbital exchange due to d3 substitution at d4 sites. The structure of the d3 − d4 spin–orbital coupling between the impurity and the host in the presence of octahedral rotations favors a distinct type of orbital polarization pointing towards the impurity and outside the impurity–host plane. This yields an effective lattice potential that generally competes with that associated with flat octahedra and, in turn, can drive an inversion of the crystal field interaction.


2019 ◽  
Vol 4 (4) ◽  
pp. 84 ◽  
Author(s):  
Alexander Moskvin

We present an overview of the microscopic theory of the Dzyaloshinskii–Moriya (DM) coupling in strongly correlated 3d compounds. Most attention in the paper centers around the derivation of the Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types of the (super)exchange interaction and crystal field. We consider both the Moriya mechanism of the antisymmetric interaction and novel contributions, in particular, that of spin–orbital coupling on the intermediate ligand ions. We have predicted a novel magnetic phenomenon, weak ferrimagnetism in mixed weak ferromagnets with competing signs of Dzyaloshinskii vectors. We revisit a problem of the DM coupling for a single bond in cuprates specifying the local spin–orbital contributions to the Dzyaloshinskii vector focusing on the oxygen term. We predict a novel puzzling effect of the on-site staggered spin polarization to be a result of the on-site spin–orbital coupling and the cation-ligand spin density transfer. The intermediate ligand nuclear magnetic resonance (NMR) measurements are shown to be an effective tool to inspect the effects of the DM coupling in an external magnetic field. We predict the effect of a strong oxygen-weak antiferromagnetism in edge-shared CuO 2 chains due to uncompensated oxygen Dzyaloshinskii vectors. We revisit the effects of symmetric spin anisotropy directly induced by the DM coupling. A critical analysis will be given of different approaches to exchange-relativistic coupling based on the cluster and the DFT (density functional theory) based calculations. Theoretical results are applied to different classes of 3d compounds from conventional weak ferromagnets ( α -Fe 2 O 3 , FeBO 3 , FeF 3 , RFeO 3 , RCrO 3 , ...) to unconventional systems such as weak ferrimagnets (e.g., RFe 1 - x Cr x O 3 ), helimagnets (e.g., CsCuCl 3 ), and parent cuprates (La 2 CuO 4 , ...).


Sign in / Sign up

Export Citation Format

Share Document