Condensed Matter
Latest Publications


TOTAL DOCUMENTS

336
(FIVE YEARS 231)

H-INDEX

10
(FIVE YEARS 6)

Published By Mdpi Ag

2410-3896

2022 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Fatemeh Keshavarz ◽  
Marius Kadek ◽  
Bernardo Barbiellini ◽  
Arun Bansil

We discuss the applicability of the naturally occurring compound Ferrous Oxalate Dihydrate (FOD) (FeC2O4·2H2O) as an anode material in Li-ion batteries. Using first-principles modeling, we evaluate the electrochemical activity of FOD and demonstrate how its structural water content affects the intercalation reaction and contributes to its performance. We show that both Li0 and Li+ intercalation in FOD yields similar results. Our analysis indicates that fully dehydrated ferrous oxalate is a more promising anodic material with higher electrochemical stability: it carries 20% higher theoretical Li storage capacity and a lower voltage (0.68 V at the PBE/cc-pVDZ level), compared to its hydrated (2.29 V) or partially hydrated (1.43 V) counterparts.


2022 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Jacob D. Buchanan ◽  
Vamsi Borra ◽  
Md Maidul Islam ◽  
Daniel G. Georgiev ◽  
Srikanth Itapu

Whiskers are small crystalline growths, which can grow from certain metals or alloys. Reaching up to several millimeters long, whiskers have the potential to cause device failures due to short circuits and contamination by debris. Tin (Sn) is one such metal that is particularly prone to whisker development. Until the 2006 RoHS Initiative, lead (Pb) was added to tin in small amounts (up to 2%) to greatly reduce the growth of whiskers. Since then, however, industry has switched to lead-free tin solders and coatings, and the issue of whisker growth on tin has attracted new interest. A reactive-sputtering-deposited nickel oxide sublayer was shown recently to strongly suppress the growth of whiskers from an overlaying tin layer. This paper reports on using nickel oxide films, obtained by a sol–gel dip coating method, as whisker suppressing sublayers. The proposed method is simple, low-cost, and can easily be scaled up for manufacturing purposes. The properties of the sol–gel deposited nickel oxide film were examined using SEM, EDS, and Raman spectroscopy. Samples containing the nickel oxide sublayer were observed through SEM periodically over several months to examine the surfaces for whisker development, and the results show that such layers can be very effective in suppressing whisker growth.


2022 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Sivakumar Rajagopal ◽  
Rameez Pulapparambil Vallikkattil ◽  
M. Mohamed Ibrahim ◽  
Dimiter Georgiev Velev

For hybrid electric vehicles, supercapacitors are an attractive technology which, when used in conjunction with the batteries as a hybrid system, could solve the shortcomings of the battery. Supercapacitors would allow hybrid electric vehicles to achieve high efficiency and better power control. Supercapacitors possess very good power density. Besides this, their charge-discharge cycling stability and comparatively reasonable cost make them an incredible energy-storing device. The manufacturing strategy and the major parts like electrodes, current collector, binder, separator, and electrolyte define the performance of a supercapacitor. Among these, electrode materials play an important role when it comes to the performance of supercapacitors. They resolve the charge storage in the device and thus decide the capacitance. Porous carbon, conductive polymers, metal hydroxide, and metal oxides, which are some of the usual materials used for the electrodes in the supercapacitors, have some limits when it comes to energy density and stability. Major research in supercapacitors has focused on the design of stable, highly efficient electrodes with low cost. In this review, the most recent electrode materials used in supercapacitors are discussed. The challenges, current progress, and future development of supercapacitors are discussed as well. This study clearly shows that the performance of supercapacitors has increased considerably over the years and this has made them a promising alternative in the energy sector.


2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Kosuke Suzuki ◽  
Yuji Otsuka ◽  
Kazushi Hoshi ◽  
Hiroshi Sakurai ◽  
Naruki Tsuji ◽  
...  

The redox process in a lithium-ion battery occurs when a conduction electron from the lithium anode is transferred to the redox orbital of the cathode. Understanding the nature of orbitals involved in anionic as well as cationic redox reactions is important for improving the capacity and energy density of Li-ion batteries. In this connection, we have obtained magnetic Compton profiles (MCPs) from the Li-rich cation-disordered rock-salt compound LixTi0.4Mn0.4O2 (LTMO). The MCPs, which involved the scattering of circularly polarized hard X-rays, are given by the momentum density of all the unpaired spins in the material. The net magnetic moment in the ground state can be extracted from the area under the MCP, along with a SQUID measurement. Our analysis gives insight into the role of Mn 3d magnetic electrons and O 2p holes in the magnetic redox properties of LTMO.


2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Eugenia Naselli ◽  
Richard Rácz ◽  
Sandor Biri ◽  
Maria Mazzaglia ◽  
Luigi Celona ◽  
...  

At the Italian National Institute for Nuclear Physics-Southern National Laboratory (INFN-LNS), and in collaboration with the ATOMKI laboratories, an innovative multi-diagnostic system with advanced analytical methods has been designed and implemented. This is based on several detectors and techniques (Optical Emission Spectroscopy, RF systems, interfero-polarimetry, X-ray detectors), and here we focus on high-resolution, spatially resolved X-ray spectroscopy, performed by means of a X-ray pin-hole camera setup operating in the 0.5–20 keV energy domain. The diagnostic system was installed at a 14 GHz Electron Cyclotron Resonance (ECR) ion source (ATOMKI, Debrecen), enabling high-precision, X-ray, spectrally resolved imaging of ECR plasmas heated by hundreds of Watts. The achieved spatial and energy resolutions were 0.5 mm and 300 eV at 8 keV, respectively. Here, we present the innovative analysis algorithm that we properly developed to obtain Single Photon-Counted (SPhC) images providing the local plasma-emitted spectrum in a High-Dynamic-Range (HDR) mode, by distinguishing fluorescence lines of the materials of the plasma chamber (Ti, Ta) from plasma (Ar). This method allows for a quantitative characterization of warm electrons population in the plasma (and its 2D distribution), which are the most important for ionization, and to estimate local plasma density and spectral temperatures. The developed post-processing analysis is also able to remove the readout noise that is often observable at very low exposure times (msec). The setup is now being updated, including fast shutters and trigger systems to allow simultaneous space and time-resolved plasma spectroscopy during transients, stable and turbulent regimes.


2021 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ginevra Begani Provinciali ◽  
Martin Piponnier ◽  
Laura Oudjedi ◽  
Xavier Levecq ◽  
Fabrice Harms ◽  
...  

The Hartman wavefront sensor can be used for X-ray phase imaging with high angular resolution. The Hartmann sensor is able to retrieve both the phase and absorption from a single acquisition. The system calculates the shift in a series of apertures imaged with a detector with respect to their reference positions. In this article, the impact of the reference image on the final image quality is investigated using a laboratory setup. Deflection and absorption images of the same sample are compared using reference images acquired in air and in water. It can be easily coupled with tomographic setups to obtain 3D images of both phase and absorption. Tomographic images of a test sample are shown, where deflection images revealed details that were invisible in absorption. The findings reported in this paper can be used for the improvement of image reconstruction and for expanding the applications of X-ray phase imaging towards materials characterization and medical imaging.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Kenichi Kato ◽  
Kazuya Shigeta

The total scattering method, which is based on measurements of both Bragg and diffuse scattering on an equal basis, has been still challenging even by means of synchrotron X-rays. This is because such measurements require a wide coverage in scattering vector Q, high Q resolution, and a wide dynamic range for X-ray detectors. There is a trade-off relationship between the coverage and resolution in Q, whereas the dynamic range is defined by differences in X-ray response between detector channels (X-ray response non-uniformity: XRNU). XRNU is one of the systematic errors for individual channels, while it appears to be a random error for different channels. In the present study, taking advantage of the randomness, the true sensitivity for each channel has been statistically estimated. Results indicate that the dynamic range of microstrip modules (MYTHEN, Dectris, Baden-Daettwil, Switzerland), which have been assembled for a total scattering measurement system (OHGI), has been successfully restored from 104 to 106. Furthermore, the correction algorithm has been optimized to increase time efficiencies. As a result, the correcting time has been reduced from half a day to half an hour, which enables on-demand correction for XRNU according to experimental settings. High-precision X-ray total scattering measurements, which has been achieved by a high-accuracy detector system, have demonstrated valence density studies from powder and PDF studies for atomic displacement parameters.


2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Veronica De Leo ◽  
Alessandro Scordo ◽  
Catalina Curceanu ◽  
Marco Miliucci ◽  
Florin Sirghi

The VOXES collaboration at INFN National Laboratories of Frascati developed a prototype of a high resolution Von Hamos X-ray spectrometer using HAPG (Highly Annealed Pyrolytic Graphite) mosaic crystals. This technology allows the employment of extended isotropic sources and could find application in several physics fields. The capability of the spectrometer to reach energy precision and resolution below 1 and 10 eV, respectively, when used with wide sources, has been already demonstrated. Recently, the response of this device, for a ρ = 206.7 mm cylindrically bent HAPG crystal using CuKα1,2 and FeKα1,2 XRF lines, has been investigated in terms of reflection efficiency by a dedicated ray-tracing simulation. Details of the simulation procedure and the comparison with the experimental results are presented. This study is crucial in order to retrieve information on the spectrometer signal collection efficiency, especially in the energy range in which the standard calibration procedures cannot be applied.


2021 ◽  
Vol 6 (4) ◽  
pp. 52
Author(s):  
Victor Velasco ◽  
Marcello B. Silva Neto ◽  
Andrea Perali ◽  
Sandro Wimberger ◽  
Alan R. Bishop ◽  
...  

Because of its sensitivity to the instantaneous structure factor, S(Q,t = 0), Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for probing the dynamic structure of condensed matter systems in which the charge and lattice dynamics are coupled. When applied to hole-doped cuprate superconductors, EXAFS has revealed the presence of internal quantum tunneling polarons (IQTPs). An IQTP arises in EXAFS as a two-site distribution for certain Cu–O pairs, which is also duplicated in inelastic scattering but not observed in standard diffraction measurements. The Cu–Sr pair distribution has been found to be highly anharmonic and strongly correlated to both the IQTPs and to superconductivity, as, for example, in YSr2Cu2.75Mo0.25O7.54(Tc=84 K). In order to describe such nontrivial, anharmonic charge-lattice dynamics, we have proposed a model Hamiltonian for a prototype six-atom cluster, in which two Cu-apical-O IQTPs are charge-transfer bridged through Cu atoms by an O atom in the CuO2 plane and are anharmonically coupled via a Sr atom. By applying an exact diagonalization procedure to this cluster, we have verified that our model indeed produces an intricate interplay between charge and lattice dynamics. Then, by using the Kuramoto model for the synchronization of coupled quantum oscillators, we have found a first-order phase transition for the IQTPs into a synchronized, phase-locked phase. Most importantly, we have shown that this transition results specifically from the anharmonicity. Finally, we have provided a phase diagram showing the onset of the phase-locking of IQTPs as a function of the charge-lattice and anharmonic couplings in our model. We have found that the charge, initially confined to the apical oxygens, is partially pumped into the CuO2 plane in the synchronized phase, which suggests a possible connection between the synchronized dynamic structure and high-temperature superconductivity (HTSC) in doped cuprates.


2021 ◽  
Vol 6 (4) ◽  
pp. 54
Author(s):  
Giorgio Benedek ◽  
Joseph R. Manson ◽  
Salvador Miret-Artés ◽  
Adrian Ruckhofer ◽  
Wolfgang E. Ernst ◽  
...  

In the original publication [...]


Sign in / Sign up

Export Citation Format

Share Document