Investigation of decolorization kinetics and biodegradation of azo dye Acid Red 18 using sequential process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor

2012 ◽  
Vol 71 ◽  
pp. 43-49 ◽  
Author(s):  
E. Hosseini Koupaie ◽  
M.R. Alavi Moghaddam ◽  
S.H. Hashemi
Author(s):  
Mehdi Hajsardar ◽  
Seyed Mehdi Borghei ◽  
Amir Hessam Hassani ◽  
Afshin Takdastan

Abstract A series of reactors including a sequencing batch reactor (SBR) and a sequencing batch biofilm reactor (SBBR) were used for nitrogen removal. The aim of this study was simultaneous removal of NH4+-N and NOx–-N from synthetic wastewater. In the novel proposed method, the effluent from SBR was sequentially introduced into SBBR, which contained 0.030 m3 biofilm carriers, so the system operated under a paired sequence of aerobic-anoxic conditions. The effects of different carbon sources and aeration conditions were investigated. A low dissolved oxygen (DO) level in the biofilm depth of the fixed-bed process (SBBR) simulated the anoxic phase conditions. Accordingly, a portion of NH4+-N that was not converted to NO3–-N by the SBR process was converted to NO3–-N in the outer layer of the biofilm in the SBBR process. Further, simultaneous nitrification and denitrification (SND) was achieved in the SBBR where NO2–-N was converted to N2 directly, before NO3–-N conversion (partial nitrification). The level of mixed liquid suspended solids (MLSS) was 2740 mg/l at the start of the experiments. The required carbon source (C: N ratio of 4) was provided by adding an internal carbon source (through step feeding) or ethanol. Firstly, as part of the system (SBR and SBBR), SBR operated at a DO level of 1 mg/l while SBBR operated at a DO concentration of 0.3 mg/l during Run-1. During Run-2, the system operated at the low DO concentration of 0.3 mg/l. When the source of carbon was ethanol, the nitrogen removal rate (RN) was higher than the operation with an internal carbon source. When the reactors were operated at the same DO concentration of 0.3 mg/l, 99.1 % of the ammonium was removed. The NO3–-N produced during the aerobic SBR operation of the novel method was removed in SBBR reactor by 8.3 %. The concentrations of NO3--N and NO2–-N in the SBBR effluent were reduced to 2.5 and 5.5 mg/l, respectively. Also, the total nitrogen (TN) removal efficiency was 97.5 % by adding ethanol at the DO level of 0.3 mg/l. When C:N adjustment was carried out SND efficiency at C:N ratio of 6.5 reached to 99 %. The increasing nitrogen loading rate (NLR) to 0.554 kg N/m3 d decreased SND efficiency to 80.7 %.


2001 ◽  
Vol 43 (1) ◽  
pp. 233-240 ◽  
Author(s):  
H. Helness ◽  
H. Ødegaard

Biological phosphorus and nitrogen removal in biofilm processes have a potential advantage compared to activated sludge processes, because of less vulnerability with respect to sludge loss and because biofilm processes, in general, are more compact with a smaller footprint. Experiments have been carried out in a moving bed biofilm reactor operated as a sequencing batch reactor (SBR), with simultaneous nitrification, phosphorus uptake and denitrification in the aerobic phase. In order to achieve good phosphorus and nitrogen removal, the length of the anaerobic period should be tuned to achieve near complete removal of easily biodegradable COD in the anaerobic period, and the length of the aerobic period should be long enough for complete nitrification. The total COD-loading rate must be at the same time be kept high enough to achieve a net growth of biomass in the reactor.


Sign in / Sign up

Export Citation Format

Share Document