synthetic wastewater
Recently Published Documents


TOTAL DOCUMENTS

1265
(FIVE YEARS 399)

H-INDEX

51
(FIVE YEARS 10)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 229
Author(s):  
Sabin Pathak ◽  
Shuai Wang ◽  
Eshetu Janka

Removing ammonium via the partial nitritation anammox (PNA) process has been widely applied because of its cost and energy effectiveness. However, the first stage of PNA, partial nitritation, is hard to implement practically due to the challenging suppression of nitrate oxidizing bacteria (NOB) and should be achieved in the anammox environment to extend it to one stage PNA. Hence, this article evaluates different techniques, such as the combination of low dissolve oxygen (DO) and high free ammonia (FA), and the intermittent aeration cycle to achieve partial nitritation in an anammox start-up environment. For this purpose, a 10.5 L lab-scale moving bed biofilm reactor was set up and fed with synthetic wastewater and the transformation of influent ammonium into nitrate and nitrite was measured. The results showed that, despite applying low DO and higher free ammonia than the inhibition range of NOB, the nitrate production rate (NPR) was consistently higher than the nitrite accumulation rate (NAR), signifying no sufficient NOB suppression, partial nitritation under continuous aeration and up to a 0.27 gN/m2.d surface ammonium loading rate (SALR). Higher SALR than 0.27 gN/m2.d could result in partial nitritation since nitrogen compounds transformation was closer to partial nitritation when the reactor was subjected to 0.27 gN/m2.d rather than 0.14 gN/m2.d. Lifting up the SALR, on the other hand, results in a bad anammox environment and cannot prolong it to one-stage PNA. An intermittent aeration cycle with four different cycle lengths sets, obtained by monitoring nitrogen compound transformation, was, therefore, applied to the reactor. The relatively shorter aerobic length of 10 min ON and 30 OFF intermittent aeration cycle with 0.5 mg/L aerated DO was successful in achieving the partial nitritation with NPR, NAR, and ammonium removal efficiency (ARE) values of 17%, 78%, and 37%, respectively, showing that shorter aerated length suppresses NOB to a high degree due to less available time for NOB after oxygen starvation.


2022 ◽  
Vol 31 (2) ◽  
pp. 135-142
Author(s):  
Lovely Aktar ◽  
Mohammad Moniruzzaman ◽  
Yasuzo Sakai ◽  
Mihir Lal Saha

This study was undertaken to evaluate the removal of lipid-rich organic matter from wastewater by lipase producing bacteria. Ten potential lipase producing bacteria were isolated from lipid-rich environments in and around Dhaka Metropolitan city. Three of them produced lipase higher than 10 U/ml. These three isolates and their consortium were used for synthetic wastewater treatment in the laboratory. The initial COD value of synthetic wastewater was 1,200 mg/l. COD removal efficiencies in the synthetic wastewater were 74.75, 73.33 and 66.67% by the Stenotrophomonas maltophilia e-a22, Pseudomonas aeruginosa 12 and Bacillus subtilis 20B, respectively. Stenotrophomonas maltophilia showed better COD removal performance (74.75%) in case of monoculture. But consortium showed better COD removal (83.33%) than that of monoculture. Therefore, it could be concluded that consortium of three isolates will be more useful for wastewater treatment as seed cultures in the wastewater treatment plant associated with the lipid-rich wastewater. Plant Tissue Cult. & Biotech. 31(2): 135-142, 2021 (December)


2022 ◽  
Vol 12 (3) ◽  
pp. 19-27
Author(s):  
Sumaiya Nusrat Chaitee ◽  
Rudra Protap Biswas ◽  
Md Imran Kabir

The organic content from urban wastewater is treated with various conventional processes efficiently. However, for biological treatment of secondary effluent containing excessive inorganic nitrogen and phosphorus, microalgae can be used. In this study, algal strains have been collected from locally available natural blooms and cultured in a BG-11 medium. Spirulina sp., the blue-green algae, dominant over the other species within the natural bloom, is applied in ten different dosages (0.2-2.5 g/L) to the synthetic wastewater with a 3-day hydraulic retention time. The removal efficiency of nitrate, ammonia, and phosphate have been observed to be about 60%, 30%, and 54% respectively. The highest removal efficiency has been found at 2.5 g/L of microalgae dose. Linear forms of Langmuir and Freundlich isotherms have been used for biosorption modeling, and both isotherms fit well with R2>60% and NRMSE<11% in all cases. Additionally, the separation factor and the adsorption intensity represent the favorability of the biosorption process. Journal of Engineering Science 12(3), 2021, 19-27


Author(s):  
Hussein I. Abdel-Shafy ◽  
Rehan M. M. Morsy ◽  
Mahmoud A. I. Hewehy ◽  
Taha M. A. Razek ◽  
Maamoun M. A. Hamid

Abstract A real industrial electroplating rinsing wastewater was collected and subjected the physical and chemical examination. The study showed that it can be categorized as high strength wastewater, at pH- 2, COD 1430 mg/l, and high level of metals above permissible limits namely: 150, 30, 25, and 2.9 for Ni, Cu, Zn, and Fe mg/l respectively. Therefore, metals must be adequately removed before discharging to avoid any hazardous impact on the environment. Similar synthetic wastewater was prepared to study effect of chemical coagulation for the precipitation of metals. The optimum removal rate was achieved by using a combination of lime and ferric chloride at 100 and 30 mg/l respectively. The chemically treated electroplating wastewater was subjected to an electrocoagulation study. A comparison between iron and stainless-steel electrodes for the removal of metals was investigated. Furthermore, the effect of different electric voltage, and the contact time on metals removal efficiency were also examined. It was found that the optimum removal capacity was achieved when stainless steel electrode was employed in the presence of ferric chloride as coagulant, at 10 volts, 30 min. contact time, and pH 9 for synthetic solution. In a batch treatment system, the real industrial wastewater was treated at the predetermined optimum operating conditions; the removal of metals was 92.1%, 87.8% and 82.9% for Ni. Zn, and Cu respectively. By employing a continuous flow reactor for the treatment of the same real wastewater and under the same operating conditions; metals removal rate increased to 98.9%, 97.4% and 96.6% for Ni. Zn, and Cu respectively. The level of metals in the final treated wastewater copes with Egyptian Environmental Regulation. The overall results confirmed that the electro-coagulation (EC) technology offers an effective alternative process in combination with the conventional chemical coagulation process for reaching high removal performance of toxic metals from the electroplating wastewater. The advantage of EC technique is achieving high treatment efficiency instead of expensive chemical reagents, high construction cost and/or other conventional processes. In addition, the final treated water can be reused for rinsing process in electroplating industry and/or discharging without any environmental hazard effect. It is also recommended to employ solar energy instead of electricity to reduce cost of operation.


2022 ◽  
Vol 82 ◽  
Author(s):  
E. R. Silva ◽  
E. L. Dall’Oglio ◽  
L. G. Vasconcelos ◽  
E. B. Morais

Abstract Shewanella xiamenensis G5-03 was observed to decolorize the azo dye Congo red in synthetic wastewater. The influence of some factors on the dye decolorization efficiency was evaluated. The optimal decolorization conditions were temperature 30-35 °C, pH 10.0, incubation time 10 h, and static condition. The kinetic of Congo red decolorization fitted to the Michaelis–Menten model (Vmax = 111.11 mg L-1 h-1 and Km = 448.3 mg L-1). The bacterium was also able to degrade benzidine, a product of azo bond breakage of the Congo red, which contributed to reduce the phytotoxicity. The ability of S. xiamenensis G5-03 for simultaneous decolorization and degradation of Congo red shows its potential application for the biological treatment of wastewaters containing azo dyes.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132016
Author(s):  
Deen Dayal Giri ◽  
Alaa Alhazmi ◽  
Akbar Mohammad ◽  
Shafiul Haque ◽  
Neha Srivastava ◽  
...  

Author(s):  
Ho Hong Quyen Ho

Eco-friendly flocculants of alginic acid, NaHCO3 and CaCl2.2H2O with advantages of strong gelation characteristics were prepared for supporting the removal of phosphate in synthetic wastewater using CaO and Ca(OH)2 as precipitants. The effects of weight ratios of each component in flocculants, dosage of flocculants and initial phosphate concentration were investigated through batch of experiments. The results showed excellent flocculation performance with the weight ratio of alginic acid:NaHCO3 and CaCl2.2H2O at 1:0.3:0.02 and the dosage of flocculants at 0.0050 g/25 mL of phosphate solution in the range of initial phosphate concentration from 50 to 1000 ppm. Comparing to the sample without flocculants, the phosphate removal efficiency using CaO and Ca(OH)2 with the addition of flocculants increased from 19 and 20% to 97% at the initial phosphate concentration of 50 ppm, respectively by filtration of filter paper 2.7 μm.


Sign in / Sign up

Export Citation Format

Share Document