scholarly journals Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor

2007 ◽  
Vol 37 (10) ◽  
pp. 1015-1025 ◽  
Author(s):  
Yang Wang ◽  
Haobo Jiang
1986 ◽  
Vol 32 (5) ◽  
pp. 473-478 ◽  
Author(s):  
Craig R Roseland ◽  
Janell M Green ◽  
Lynn M Riddiford
Keyword(s):  

1985 ◽  
Vol 74 (1) ◽  
pp. 137-152
Author(s):  
B.L. Gupta ◽  
J.A. Dow ◽  
T.A. Hall ◽  
W.R. Harvey

An alkaline hydrolysate of Bacillus thuringiensis var kurstaki HD1 (Btk) parasporal crystals was administered at 25 micrograms ml-1 (f.c.) to isolated, short-circuited, midguts of tobacco hornworm (Manduca sexta) larvae. The short-circuit current (s.c.c.), a precise measure of K+ active transport, was inhibited by 78% in 10 min in Btk-treated midguts as compared to controls. The elemental concentrations of K, together with Na, Mg, P, S, Cl and Ca, as well as the water content, were determined by electron probe X-ray microanalysis (EPXMA) in the muscle cells, columnar cells and goblet cells, as well as in the extracellular goblet cavity and the bathing media. The average K concentration in the goblet cell cavity was 129 mmol/kg wet wt in control midguts but only 37 mmol/kg wet wt in Btk-treated midguts. The elemental concentrations, including that of K, in other cell compartments were much less affected by Btk, but a rise in total cell calcium is suggested. It has been previously suggested that in vitro Btk acts specifically on limited regions of the apical membrane of the midgut epithelial cells. The simplest interpretation of the EPXMA results would be that initially Btk interacts specifically with the goblet cell apical membrane, which bounds the goblet cavity and contains the K+ pump responsible for the s.c.c. and high transepithelial potential difference (p.d.). Such interaction results in a rapid disruption of K+ transport across the goblet cell apical membrane, leading to dissipation of the K+ gradient and loss of p.d. The histopathological changes previously reported by other workers would then be a consequence of K+ pump inhibition causing changes in the intracellular pH, Ca2+ etc. Some possible molecular bases for these specific interactions between Btk and cell membrane are discussed.


2005 ◽  
Vol 93 (4) ◽  
pp. 1949-1958 ◽  
Author(s):  
A. R. Mercer ◽  
P. Kloppenburg ◽  
J. G. Hildebrand

Using whole cell recordings from antennal-lobe (AL) neurons in vitro and in situ, in semi-intact brain preparations, we examined membrane properties that contribute to electrical activity exhibited by developing neurons in primary olfactory centers of the brain of the sphinx moth, Manduca sexta. This activity is characterized by prolonged periods of membrane depolarization that resemble plateau potentials. The presence of plateau potential–generating mechanisms was confirmed using a series of tests established earlier. Brief depolarizing current pulses could be used to trigger a plateau state. Once triggered, plateau potentials could be terminated by brief pulses of hyperpolarizing current. Both triggering and terminating of firing states were threshold phenomena, and both conditions resulted in all-or-none responses. Rebound excitation from prolonged hyperpolarizing pulses could also be used to generate plateau potentials in some cells. These neurons were found to express a hyperpolarization-activated inward current. Neither the generation nor the maintenance of plateau potentials was affected by removal of Na+ ions from the extracellular medium or by blockade of Na+ currents with TTX. However, blocking of Ca2+ currents with Cd2+ (5 × 10−4 M) inhibited the generation of plateau potentials, indicating that, in Manduca AL neurons, plateau potentials depend on Ca2+. Examining Ca2+ currents in isolation revealed that activation of these currents occurs in the absence of experimentally applied depolarizing stimuli. Our results suggest that this activity underlies the generation of plateau potentials and characteristic bursts of electrical activity in developing AL neurons of M. sexta.


1991 ◽  
Vol 21 (1) ◽  
pp. 41-51 ◽  
Author(s):  
M.L. Grieneisen ◽  
J.T. Warren ◽  
S. Sakurai ◽  
L.I. Gilbert

2014 ◽  
Vol 83 (1) ◽  
pp. 396-404 ◽  
Author(s):  
Jonathan F. Holt ◽  
Megan R. Kiedrowski ◽  
Kristi L. Frank ◽  
Jing Du ◽  
Changhui Guan ◽  
...  

Enterococcus faecalisis a commensal and pathogen of humans and insects. InManduca sexta,E. faecalisis an infrequent member of the commensal gut community, but its translocation to the hemocoel results in a commensal-to-pathogen switch. To investigateE. faecalisfactors required for commensalism, we identifiedE. faecalisgenes that are upregulated in the gut ofM. sextausing recombinase-basedin vivoexpression technology (RIVET). The RIVET screen produced 113 clones, from which we identified 50 genes that are more highly expressed in the insect gut than in culture. The most frequently recovered gene was locus OG1RF_11582, which encodes a 6-phosphogluconolactonase that we designatedpglA. ApglAdeletion mutant was impaired in both pathogenesis and gut persistence inM. sextaand produced enhanced biofilms compared with the wild type in anin vitropolystyrene plate assay. Mutation of four other genes identified by RIVET did not affect persistence in caterpillar guts but led to impaired pathogenesis. This is the first identification of genetic determinants forE. faecaliscommensal and pathogenic interactions withM. sexta. Bacterial factors identified in this model system may provide insight into colonization or persistence in other host-associated microbial communities and represent potential targets for interventions to preventE. faecalisinfections.


Sign in / Sign up

Export Citation Format

Share Document