enterococcus faecalis
Recently Published Documents





Cytokine ◽  
2022 ◽  
Vol 151 ◽  
pp. 155788
Darya V. Urusova ◽  
Joseph A. Merriman ◽  
Ananya Gupta ◽  
Liang Chen ◽  
Barun Mathema ◽  

2022 ◽  
Vol 204 ◽  
pp. 112005
Xiaorong Wei ◽  
Nengwu Zhu ◽  
Junlin Huang ◽  
Naixin Kang ◽  
Fei Li ◽  

2022 ◽  
Vol 13 (1) ◽  
pp. 129-139
Yoki Hirakawa ◽  
Sadaomi Sugimoto ◽  
Norimasa Tsuji ◽  
Takeshi Inamoto ◽  
Hiroshi Maeda

Enterococcus faecalis is an etiological agent of endodontic infections. The present study was performed to investigate the gene profiles of E. faecalis induced by type I collagen stimulation. E. faecalis ATCC 19433 was cultivated with [collagen (+)] or without type I collagen [collagen (−)], and transcriptome analysis was performed using high-throughput sequencing technology. A total of 3.6 gb of information was obtained by sequence analysis and 77 differentially expressed genes (DEGs) between the two culture conditions were identified. Among the 77 DEGs, 35 genes were upregulated in collagen (+) E. faecalis, whereas 42 genes were downregulated. Gene Ontology (GO) enrichment analysis was performed and 11 GO terms, including metalloendopeptidase activity (GO:0004222) and two related GO terms (GO:0031012, GO:0044421), were significantly enriched in the set of upregulated genes. We focused on an upregulated DEG belonging to the matrixin metalloprotease gene family, and matrix metalloprotease (MMP) activities of the bacterial cell were examined. The generic MMP, MMP-8, and MMP-9 activities of collagen (+) E. faecalis were significantly higher than those of collagen (−) E. faecalis. These results suggested that contact with type I collagen may alter the gene expression profile of E. faecalis, and upregulation of metalloprotease genes may result in enhanced MMP activities in E. faecalis.

Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 18
Yan Xu ◽  
Yiqun Li ◽  
Mingyang Xue ◽  
Zidong Xiao ◽  
Yuding Fan ◽  

Diseases of crucian carp (Carassius auratus) are closely related to intestinal parameters. Enterococcus faecalis has strong colonization ability in the intestinal tract, and produces natural antibiotics, bacteriocin, and other bacteriostatic substances, which can effectively inhibit some pathogenic bacteria and improve the intestinal microenvironment. This study aimed to assess the effects of E. faecalis YFI-G720 which was isolated from the intestinal of crucian carp on the growth, immunity, intestinal health, and disease resistance of crucian carp. Fish (48.16 ± 0.55 g) were fed four diets, commercial diet or diet containing E. faecalis at 105 CFU/g (EF1), 106 CFU/g (EF2), or 107 CFU/g (EF3) for 28 days. The results showed that supplementation of E. faecalis significantly improved the weight gain ratio (WGR) and the specific growth rate (SGR) compared with control group (p < 0.05). Intestinal mucosal epithelial cells in EF2 were intact and normal, but there was obvious vacuolation in CG. Compared with CG, serum C3 and IgM in EF2 were significantly increased at the end of the experiment (p < 0.05), and serum alkaline phosphatase was significantly higher in all experimental groups (p < 0.05). Among studied immune-related genes, expression was detected by qPCR, C3, IgM, and IL-1βwere upregulated in all experimental groups to varying degrees from 14 days, with highest expression in EF2 at 28 days. Intestinal microbiota structure analyzed through high-throughput sequencing, and the results showed that the relative abundance of Aeromonas and Acinetobacter decreased while Cetobacterium increased in all experimental groups, with the greatest changes in EF2. Challenge tests showed that fish fed E. faecalis were more resistant to Aeromonas veronii (p < 0.05). In conclusion, dietary E. faecalis YFI-G720 at 106 CFU/g can improve the health status, immune parameters, intestinal microbiota composition, and disease resistance of crucian carp.

Bioanalysis ◽  
2022 ◽  
Frederick Verbeke ◽  
Nathan Debunne ◽  
Yorick Janssens ◽  
Bart De Spiegeleer ◽  
Evelien Wynendaele

Background: Bacteria coordinate their behavior as a group via communication with their peers, known as ‘ quorum sensing’. Enterococcus faecalis employs quorum sensing via RNPP-peptides which were not yet reported to be present in mammalian biofluids. Results: Solid phase extraction of murine feces was performed, followed by ultra high performance liquid chromatography (UHPLC–MS/MS) in multiple reaction monitoring (MRM) mode (in total <90 min/sample) for the nine known RNPP peptides. Limits of detection ranged between 0.045 and 52 nM. Adequate identification criteria allowed detection of RNPP quorum sensing peptides in 2/20 wild-type murine feces samples (i.e., cAM373 and cOB1). Conclusion: A fit-for-purpose UHPLC–MS/MS method detected these RNPP peptides in wild-type murine feces samples.

2022 ◽  
Vol 10 (1) ◽  
pp. 124
Xinling He ◽  
Siqi Jin ◽  
Wei Fan ◽  
Bing Fan

The prevention and treatment of oral diseases is more difficult in diabetic patients with poorly controlled blood glucose levels. This study aims to explore an effective, low-cytotoxicity medication for root canal treatment in diabetic patients. The antibacterial effect of the combination of Triton X-100 (TX-100) and metformin (Met) on Enterococcus faecalis (E. faecalis) was evaluated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration required to kill 99% bacteria (MBC99) and by conducting dynamic time-killing assays. While the antibiofilm activity was measured by crystal violet (CV) assay, field emission scanning electron microscope (FE-SEM), confocal laser scanning microscope (CLSM) and colony-forming unit (CFU) counting assays. The expression of relative genes was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), and the cytotoxicity of the new combination on MC3T3-E1 cell was also tested. Results showed that the antibacterial and antibiofilm activities of Met could be significantly enhanced by very low concentrations of TX-100 in both normal and high-glucose conditions, with a much lower cytotoxicity than 2% chlorhexidine (CHX). Thus, the TX-100 + Met combination may be developed as a promising and effective root canal disinfectant for patients with diabetes.

Sign in / Sign up

Export Citation Format

Share Document