heliothis virescens
Recently Published Documents


TOTAL DOCUMENTS

759
(FIVE YEARS 29)

H-INDEX

57
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yanhua Shi ◽  
Weiping Lin ◽  
Guohui Wang ◽  
Punan Zhao ◽  
Guo-hua Huang ◽  
...  

Abstract Analysis of orthology is important for understanding protein conservation, function and phylogenomics. This study performed a comprehensive identification of Ascoviridae orthology based on identification of 366 ascoviridae protein homologue groups and phylogenetic analysis of 34 non-single copy proteins. Our fondings revealed 90 newly annotated proteins, five new identified Ascoviridae core proteins and 14 Ascovirus core proteins. Moreover, a phylogenomic tree of 11 ascoviridae species was inferred based on the concatenation of 35 of 45 Ascoviridae ortholog groups. In combination with phosphoproteomic results and conservation estimations, 30 conserved phosphorylation sites on 17 phosphoproteins were identified from a total of 176 phosphosites on 57 phosphoproteins from Heliothis virescens ascovirus 3h (HvAV-3h), supplying potential research targets for exploration of the detailed role of these protein in the regulation of viral infection mechanisms. This study would facilitates further Ascoviridae genome annotation and comparison and other functional genomic investigations.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1621
Author(s):  
Peng Zhang ◽  
Matthew Turnbull

Polydnaviruses are dsDNA viruses associated with endoparasitoid wasps. Delivery of the virus during parasitization of a caterpillar and subsequent virus gene expression is required for production of an amenable environment for parasitoid offspring development. Consequently, understanding of Polydnavirus gene function provides insight into mechanisms of host susceptibility and parasitoid wasp host range. Polydnavirus genes predominantly are arranged in multimember gene families, one of which is the vinnexins, which are virus homologues of insect gap junction genes, the innexins. Previous studies of Campoletis sonorensis Ichnovirus Vinnexins using various heterologous systems have suggested the four encoded members may provide different functionality in the infected caterpillar host. Here, we expressed two of the members, vnxG and vnxQ2, using recombinant baculoviruses in susceptible host, the caterpillar Heliothis virescens. Following intrahemocoelic injections, we observed that >90% of hemocytes (blood cells) were infected, producing recombinant protein. Larvae infected with a vinnexin-recombinant baculovirus exhibited significantly reduced molting rates relative to larvae infected with a control recombinant baculovirus and mock-infected larvae. Similarly, larvae infected with vinnexin-recombinant baculoviruses were less likely to survive relative to controls and showed reduced ability to encapsulate chromatography beads in an immune assay. In most assays, the VnxG protein was associated with more severe pathology than VnxQ2. Our findings support a role for Vinnexins in CsIV and more broadly Ichnovirus pathology in infected lepidopteran hosts, particularly in disrupting multicellular developmental and immune physiology.


Author(s):  
Gabriel Zilnik ◽  
Hannah J Burrack

Abstract The tobacco budworm, Chloridea (Heliothis) virescens (F.), has evolved resistance to numerous insecticides in the field. In tobacco, chlorantraniliprole can be applied as either a preventative systemic soil application at or near transplant, or a foliar application timed to current treatment thresholds. With a novel mode of action chlorantraniliprole provides an option for rotation with other insecticides to reduce the probability of insecticide resistance development. However, specific usage patterns in tobacco have the potential to increase the risk of resistance development to this insecticide. In particular, soil applied treatments may expose C. virescens to sublethal concentrations of the insecticide. We studied chlorantraniliprole susceptibility in nine field populations and one laboratory strain of C. virescens using a diet incorporation bioassay. Mortality was measured at 7, 10, and 14 d after exposure. Our results demonstrated that bioassays should be evaluated at 14 d after exposure to optimize interpretation of the dose–response due to the antifeeding properties of chlorantraniliprole. We observed low variation within field-collected populations. Field populations were as susceptible as the laboratory strain; the resistance ratio at the 14-d evaluation for field-collected populations ranged from 1.01 to 1.05. A discriminating dose of 0.117, 0.080, and 0.070 μg a.i./g diet could be used at 7, 10, and 14 d, respectively. Larval growth varied between field populations. Two field populations continued growing on diet containing chlorantraniliprole and differed in size from the laboratory and other populations. Further evaluation of growth inhibition will be necessary.


2020 ◽  
Vol 168 (12) ◽  
pp. 911-927 ◽  
Author(s):  
Wellington Ivo Eduardo ◽  
Arlindo Leal Boiça Júnior ◽  
Renato Franco Oliveira Moraes ◽  
Bruno Henrique Sardinha Souza ◽  
Helder Louvandini ◽  
...  
Keyword(s):  

2020 ◽  
Vol 113 (6) ◽  
pp. 2739-2744
Author(s):  
Colin A R Bonser ◽  
Xuan Chen ◽  
Carlos E Astete ◽  
Cristina M Sabliov ◽  
Jeffrey A Davis

Abstract A meridic diet overlay bioassay using empty, positively charged zein nanoparticles ((+)ZNP) was performed on soybean looper (Chrysodeixis includens (Walker)), tobacco budworm (Heliothis virescens (F.)), and velvetbean caterpillar (Anticarsia gemmatalis Hübner) (Lepidoptera: Noctuidae). Assessment of effects on mortality and development weights 7 d after ingestion of (+)ZNP were evaluated on larvae of each species. Treatments involved different concentrations, with H. virescens and A. gemmatalis offered 0 and 3,800 ppm (+)ZNP, whereas C. includens colonies were offered 0, 630, 1,260, and 2,520 ppm (+)ZNP. Mortality of A. gemmatalis and C. includens increased after ingestion of the highest (+)ZNP concentrations, while H. virescens neonate mortality was unaffected. Neonate and third-instar weights of A. gemmatalis and C. includens, and neonate H. virescens, decreased with high (+)ZNP concentrations. Following mortality results from A. gemmatalis neonates, a concentration response test was performed using a range of (+)ZNP concentrations. The LC50 for A. gemmatalis was 1,478 ppm. The potential of (+)ZNP as a pest management tactic is discussed.


Sign in / Sign up

Export Citation Format

Share Document