pupal cuticle
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 4)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
Vol 11 ◽  
Author(s):  
Xiao-Long Liu ◽  
Wei-Kang Han ◽  
Long-Ji Ze ◽  
Ying-Chuan Peng ◽  
Yi-Lin Yang ◽  
...  

Yellow genes are thought to be involved in the melanin biosynthetic pathway and play a crucial role in pigmentation reactions in insects. However, little research has been done on yellow genes in lepidopteran pests. To clarify the function of one of the yellow genes (yellow-y) in Spodoptera litura, we cloned the full-length of yellow-y, and investigated its spatial and temporal expression profiles by quantitative real-time PCR (qPCR). It revealed that yellow-y was highly expressed in larva of fourth, fifth, and sixth instars, as well as in epidermis (Ep), fat bodies (FB), Malpighian tubes (MT), and midguts (MG) of the larvae; whereas it was expressed in very low levels in different tissues of adults, and was almost undetected in pupa. This expression profile suggests an important role of yellow-y in larvae, minor role in adults, and no role in pupae. To confirm this, we disrupted yellow-y using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, and obtained G0 insects with mutation in yellow-y. The mutation in yellow-y clearly rendered the larvae body, a color yellower than that of wide type insects, and in addition, the mutation resulted in abnormal segmentation and molting for older larvae. The mutation of yellow-y also made various adult tissues (antennae, proboscis, legs, and wings) yellowish. However, the mutation had no effect on pigmentation of the pupal cuticle. Taken together, our study clearly demonstrated the role of yellow-y not only in the body pigmentation of larvae and adults, and but also in segmentation and molting of larvae, providing new insights into the physiology of larval development, as well as a useful marker gene for genome editing based studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Kaczmarek ◽  
Anna Katarzyna Wrońska ◽  
Michalina Kazek ◽  
Mieczysława Irena Boguś

Abstract The flies of the Sarcophagidae, widespread throughout the temperate zone, are of great significance in Medicine, Veterinary science, Forensics and Entomotoxicology. Lipids are important elements of cell and organelle membranes and a source of energy for embryogenesis, metamorphosis and flight. Cuticular lipids protect from desiccation and act as recognition cues for species, nest mates and castes, and are a source of various pheromones. The free fatty acid (FFA) profile of cuticular and internal extracts of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830) larvae, pupae and adults was determined by gas chromatography–mass spectrometry (GC–MS). The larvae, pupae and adults contained FFAs from C5:0 to C28:0. The extracts differed quantitatively and qualitatively from each other: C18:1 > C16:1 > C16:0 > C18:0 predominated in the cuticular and internal extracts from the larvae and adults, while 18:1 > C16:0 > C16:1 > C18:0 predominated in the pupae. The FFA profile of the cuticle varies considerably between each development stage: C23:0 and C25:0 are only present in larvae, C28:0 in the pupal cuticle, and C12:1 and C18:3 in internal extracts from adults. The mechanisms underlying this diversity are discussed herein.


EvoDevo ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert D. Reed ◽  
Jayne E. Selegue ◽  
Linlin Zhang ◽  
Craig R. Brunetti

2003 ◽  
Vol 33 (3) ◽  
pp. 331-343 ◽  
Author(s):  
R.J. Suderman ◽  
S.O. Andersen ◽  
T.L. Hopkins ◽  
M.R. Kanost ◽  
K.J. Kramer

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2259-2269 ◽  
Author(s):  
Xiaofeng Zhou ◽  
Lynn M. Riddiford

The understanding of the molecular basis of the endocrine control of insect metamorphosis has been hampered by the profound differences in responses of the Lepidoptera and the Diptera to juvenile hormone (JH). In both Manduca and Drosophila, the broad (br) gene is expressed in the epidermis during the formation of the pupa, but not during adult differentiation. Misexpression of BR-Z1 during either a larval or an adult molt of Drosophila suppressed stage-specific cuticle genes and activated pupal cuticle genes, showing that br is a major specifier of the pupal stage. Treatment with a JH mimic at the onset of the adult molt causes br re-expression and the formation of a second pupal cuticle in Manduca, but only in the abdomen of Drosophila. Expression of the BR isoforms during adult development of Drosophila suppressed bristle and hair formation when induced early or redirected cuticle production toward the pupal program when induced late. Expression of BR-Z1 at both of these times mimicked the effect of JH application but, unlike JH, it caused production of a new pupal cuticle on the head and thorax as well as on the abdomen. Consequently, the ‘status quo’ action of JH on the pupal-adult transformation is mediated by the JH-induced re-expression of BR.


Sign in / Sign up

Export Citation Format

Share Document