Identification of a double-stranded RNA-degrading nuclease influencing both ingestion and injection RNA interference efficiency in the red flour beetle Tribolium castaneum

2020 ◽  
Vol 125 ◽  
pp. 103440 ◽  
Author(s):  
Yingchuan Peng ◽  
Kangxu Wang ◽  
Jiasheng Chen ◽  
Jinda Wang ◽  
Hainan Zhang ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47431 ◽  
Author(s):  
Sherry C. Miller ◽  
Keita Miyata ◽  
Susan J. Brown ◽  
Yoshinori Tomoyasu

Author(s):  
David M. Linz ◽  
Courtney M. Clark-Hachtel ◽  
Ferran Borràs-Castells ◽  
Yoshinori Tomoyasu

2020 ◽  
Vol 16 (4) ◽  
pp. 404-412 ◽  
Author(s):  
Ihab Alnajim ◽  
Manjree Agarwal ◽  
Tao Liu ◽  
YongLin Ren

Background: The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is one of the world’s most serious stored grain insect pests. A method of early and rapid identification of red flour beetle in stored products is urgently required to improve control options. Specific chemical signals identified as Volatile Organic Compounds (VOCs) that are released by the beetle can serve as biomarkers. Methods: The Headspace Solid Phase Microextraction (HS-SPME) technique and the analytical conditions with GC and GCMS were optimised and validated for the determination of VOCs released from T. castaneum. Results: The 50/30 μm DVB/CAR/PDMS SPME fibre was selected for extraction of VOCs from T. castaneum. The efficiency of extraction of VOCs was significantly affected by the extraction time, temperature, insect density and type of SPME fibre. Twenty-three VOCs were extracted from insects in 4 mL flask at 35 ± 1°C for four hours of extraction and separated and identified with gas chromatography-mass spectroscopy. The major VOCs or chemical signals from T. castaneum were 1-pentadecene, p-Benzoquinone, 2-methyl- and p-Benzoquinone, 2-ethyl. Conclusion: This study showed that HS-SPME GC technology is a robust and cost-effective method for extraction and identification of the unique VOCs produced by T. castaneum. Therefore, this technology could lead to a new approach in the timely detection of T. castaneum and its subsequent treatment.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


Sign in / Sign up

Export Citation Format

Share Document