Effects of outlet port positions on the jet impingement heat transfer characteristics in the mini-fin heat sink

Author(s):  
Paisarn Naphon ◽  
Setha Klangchart
Author(s):  
Sandesh S. Chougule ◽  
Mayank Modak ◽  
Prajakta D. Gharge ◽  
S. K. Sahu

In present study, an experimental investigation has been carried out to analyze the heat transfer characteristics of CuO-water nanofluids jets on a hot surface. A rectangular stainless steel foil (AISI-304, 0.15 mm thick) is used as a test surface is electrically heated to obtain the required initial temperature. The distribution of heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. The effect of nanoparticle concentration and Reynolds number of the nanofluids jet impingement heat transfer characteristics is studied. Tests were performed for an initial surface temperature of 500°C, Reynolds number (5000≤Re≤13000), CuO-water nanofluids concentration (Φ= 0.15%, 0.6%) and nozzle to plate distance was l/d= 4.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén

Experimental studies are carried out to investigate the jet impingement heat transfer characteristics in cross-flow with and without the presence of a 45 deg V-shaped rib. The local heat transfer coefficients are obtained by a liquid crystal thermography (LCT) technique. The ratio of nozzle-to-surface spacing to jet diameter is 3.56, the jet Reynolds number is kept at 17,000, the cross-flow Reynolds number spans from 32,700 to 65,000, the velocity ratio of jet to cross-flow ranges from 1.5 to 3.0. The impingement heat transfer characteristics in cross-flow are changed from the results without the cross-flow, and they are strongly affected by the velocity ratio. The presence of a V-shaped rib significantly modifies the heat transfer patterns of the impinging jet in cross-flow. Compared to the results without ribs, the heat transfer over the ribbed surface is enhanced for a low velocity ratio but retarded for a high velocity ratio, depending on the interaction between the rib induced flow and the impinging jet.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Sign in / Sign up

Export Citation Format

Share Document