initial surface
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 145)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
pp. 364
Author(s):  
Thathsarani Kannangara ◽  
Maurice Guerrieri ◽  
Sam Fragomeni ◽  
Paul Joseph

Geopolymer concrete is a valuable and alternative type of concrete that is free of traditional cement. Generally, geopolymer concretes require a source material, which is rich in silicon and aluminum. Furthermore, fly ash-based geopolymer concretes have been proven to have superior fire resistance, primarily due to their ceramic properties, and are inherently environmentally-friendly given their zero-cement content. This paper presents the effects on initial evaporation on the performance of fly ash-based geopolymer pastes after exposure to elevated temperatures of 400 °C and 800 °C. The fly ash (FA) samples used in the present study included: Gladstone and Gladstone/Callide. The results for sealed samples placed in the oven during curing were much more consistent than the samples that were not kept covered. In addition, Gladstone fly ash-based geopolymer samples that were sealed recorded an initial maximum compressive strength reading of ca. 75 MPa, while sealed Gladstone/Callide fly ash-based geopolymer samples, of the same mix design, only recorded an initial maximum compressive strength reading of ca. 50 MPa (both subjected to oven curing at 60 °C for 24 h). However, Gladstone/Callide fly ash-based geopolymer samples exhibited a significant strength gain, ca. 90 MPa, even after being subjected to 400 °C.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 266
Author(s):  
Sebastian Fryska ◽  
Jolanta Baranowska

In order to study the suitability of the S-phase layers as the interlayer for Cr2N chromium nitride coatings, a number of composite coatings were deposited by the reactive magnetron sputtering (RMS) method on austenitic steel substrates with various initial surface conditions (as delivered and polished) and their corrosion resistance was assessed. Coatings with S-phase interlayer were deposited at three different nitrogen contents in the working atmosphere (15%, 30%, and 50%), which influenced the nitrogen concentration in the S-phase. Coatings with chromium, as a traditional interlayer to improve adhesion, and uncoated austenitic stainless steel were used as reference materials. Detailed microstructural and phase composition studies of the coatings were carried out by means of scanning electron microscopy (SEM), optical microscopy (LM), and X-ray diffraction (XRD) and were discussed in the context of results of corrosion tests carried out with the use of the potentiodynamic polarization method conducted in a 3% aqueous solution of sodium chloride (NaCl). The performed tests showed that the electrochemical potential of the S-phase/Cr2N composite coatings is similar to that of Cr/Cr2N coatings. It was also observed that the increase in the nitrogen content in the S-phase interlayer causes an increase in the polarization resistance of the S-phase/Cr2N composite coating. Moreover, with a higher nitrogen content in the S-phase interlayer, the polarization resistance of the S-phase/Cr2N coating is higher than for the Cr/Cr2N reference coating. All the produced composite coatings showed better corrosion properties in relation to the uncoated austenitic stainless steel.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Emre Yilmaz ◽  
Arzu Mujdeci

Objective: The aim of this study was to evaluate the effect of four different mouthrinses on the surface roughness of two nanohybrid resin composites. Material and Methods: Fifty samples were prepared for each of the resin composites (2x8 mm) and a profilometer was used to determine the initial surface roughness (Ra) of each sample. Then, they were divided into 5 subgroups (n= 10), and exposed to the following mouthrinses (12h, 37 ºC): containing alcohol and essential oils; alcohol and chlorhexidine; alcohol-free and essential oils; alcohol free and cetil prydinium chlorite; or distilled water (control). The surface roughness of each sample was measured again. Statistical analyses of the data were performed via two-way ANOVA and Bonferroni tests. Results: Overall, statistically significant differences were not found between the resin composites (p> 0.05), but significant differences were found among the mouthrinses (p< 0.05). Interactions between the mouthrinses and the resin composites was statistically significant (p< 0.05). Both of the resin composites had the highest surface roughness after exposure to mouthrinse with alcohol and essential oils (p< 0.05), followed by mouthrinse with alcohol and chlorhexidine. Both alcohol-free mouthrinses caused surface roughness either similar to distilled water (p> 0.05) or lower than distilled water (p< 0.05) on the nanohybrid resin composites used. Conclusion: The mouthrinses affected the surface roughness of the resin composites in different ways. This was dependent on mouthrinse contents and the chemical structure of the resin composites. Alcohol-containing mouthrinses caused the most changes in the surface roughness of both resin composites. Keywords Alcohol; Chlorhexidine; Composite resin; Essential oil; Roughness.


Author(s):  
Fatemeh Mousavi ◽  
Pouyan Adibi ◽  
Ehsan Abedini

This study examined the effect of surface roughness on the pool boiling heat transfer coefficient of pure water and water-alumina nanofluid with 0.1% and 0.01% volume concentration using computational fluid dynamics on the surface of a stainless-steel cylinder. The effect of nanoparticles was checked by averaging the thermophysical properties in the equations of the flow field with boiling. Simulations were performed for initial surface roughnesses from 0.1 to 0.8 µm. Furthermore, the presence of nanoparticles would make their deposition on the heated surface and change the surface properties. Thus, once again simulations were performed for roughness with the same values but because of the deposition of nanoparticles. In doing so, two separate equations were used for the nucleation site density parameter. Ultimately, the results obtained from both types of roughness were compared. The results indicated that with an increase in the roughness, the boiling heat transfer coefficient increased. Further, at the same roughness, the boiling heat transfer rate of the deposited surface decreased for nanofluid of 0.01% vol and increased for nanofluid of 0.1% vol compared to the non-deposited surface. For pure water at 0.8 µm roughness, the sediment improved heat transfer but it reduced heat transfer for 0.4 µm and lower roughness.


Author(s):  
Adam Yonge ◽  
M. Kunz ◽  
Gabriel Gusmão ◽  
Zongtang Fang ◽  
Rakesh Batchu ◽  
...  

The temporal analysis of products (TAP) reactor provides a route to extract intrinsic kinetics from transient measurements. Current TAP uncertainty quantification only considers the experimental noise present in the outlet flow signal. Additional sources of uncertainty such as initial surface coverages, catalyst zone location, inert void fraction, gas pulse intensity and pulse delay, are not included. For this reason, a framework for quantifying initial state uncertainties present in TAP experiments is presented and applied to a carbon monoxide oxidation case study. Two methods for quantifying these sources of uncertainty are introduced. The first utilizes initial state sensitivities to approximate the parameter variances and provide insights into the structural certainty of the model. The second generates parameter confidence distributions through an ensemble-based sampling algorithm. The initial state covariance matrix can ultimately be merged with the experimental noise covariance matrix, providing a unified description of the parameter uncertainties for a TAP experiment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3278
Author(s):  
Mehdi Chougan ◽  
Francesca Romana Lamastra ◽  
Eleonora Bolli ◽  
Daniela Caschera ◽  
Saulius Kaciulis ◽  
...  

The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042028
Author(s):  
V Lebedev ◽  
V Shumyacher ◽  
Ye Kolganova ◽  
D Krivosheev

Abstract The results of studies of the technological capabilities of granular media made of natural material “Baykalit” in the conditions of vibration technological systems are presented. Baikalit is a siliceous rock-fine-grained quartzite (microquartzite) - with an aggregate structure of quartz grains measuring 1.5-3 microns with sharp boundaries between these very grains. The granules obtained as a result of crushing the mineral rock Baikalit have a sufficiently high hardness (at least 6.0 - 7.0 on the Mohs scale). The presence of many wedge-shaped vertices along the perimeter of the granules and the arbitrariness of the shape allows us to consider them as a universal cutting tool that has access to various surfaces of complexity. It is shown that vibration treatment with granular media made of natural material “Baykalit” reduces the height of the initial surface micrprofile by 0.2-0.3 microns and is an effective way to remove burrs when processing parts with a surface microprofile height of more than 0.63 microns. The use of process fluids, which include increasing the wetting capacity of both Baikalit and processed workpieces, reduces the technological time of vibration processing by 1.5 times. The presence of components in the process fluid, such as protective colloids (Na CMC), prevents the sludge from sticking to the galtovochnye bodies, that is, prevents the “salting” of their profile, reduces the rigidity of the layer on the surface of the galtovochnyh bodies and workpieces, which contributes to productivity growth.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 329
Author(s):  
Mohamed Y. Metwly ◽  
Ahmed Hemeida ◽  
Ayman S. Abdel-Khalik ◽  
Mostafa S. Hamad ◽  
Shehab Ahmed

Permanent magnet machines (PMs) equipped with fractional slot concentrated windings (FSCWs) have been preferably proposed for electric vehicle (EV) applications. Moreover, integrated on-board battery chargers (OBCs), which employ the powertrain elements in the charging process, promote the zero-emission future envisaged for transportation through the transition to EVs. Based on the available literature, the employed machine, as well as the adopted winding configuration, highly affects the performance of the integrated OBC. However, the optimal design of the FSCW-based PM machine in the charging mode of operation has not been conceived thus far. In this paper, the design and multi-objective optimization of an asymmetrical 12-slot/10-pole integrated OBC based on the efficient magnetic equivalent circuit (MEC) approach are presented, shedding light on machine performance during charging mode. An ‘initial’ surface-mounted PM (SPM) machine is first designed based on the magnetic equivalent circuit (MEC) model. Afterwards, a multi-objective genetic algorithm is utilized to define the optimal machine parameters. Finally, the optimal machine is compared to the ‘initial’ design using finite element (FE) simulations in order to validate the proposed optimization approach and to highlight the performance superiority of the optimal machine over its initial counterpart.


2021 ◽  
Vol 105 (1) ◽  
pp. 329-337
Author(s):  
David Kusmič ◽  
Lenka Klakurková ◽  
Martin Julis ◽  
Pavel Gejdoš ◽  
Jindrich Vilis ◽  
...  

In this paper, commercially cold-rolled and artificial aged EN AW 7075 T6 alloy has been used. To ensure increased corrosion resistance, surface hardness, scratching resistance, and aesthetic features, this aluminium alloy was subsequently hard anodised and hot-water sealed (AC-A). The hard anodizing and sealing process increased surface hardness up to 304±13 HV 1 from an initial surface hardness of 194±3 HV 1. Also, the microhardness of the anodised layer and bulk material has been documented. Scanning electron microscopy (SEM) was used for microstructure and trapped precipitates investigation in the 42.9±1.4 thick formed anodised layer investigation. The T6 treated (AC) and hard anodised together with sealed (AC-A) EN AW 7075 alloy corrosion properties were evaluated using the anodic potentiodynamic polarisation tests (PPT) in a neutral 2.5% NaCl deaerated solution. The corrosion rate CR (mm/y) decreased approx. 39-times for the hard anodised and sealed EN AW 7075 alloy (AC-A), associated with the shift of the Ecorr (mV) to more positive values, degreased Icorr (µA) and increased Rp (Ohm) values compared to the artificial aged (AC) alloy. Additionally, the pitting was evaluated using laser confocal microscopy, and the pitting coefficient was also calculated.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8005
Author(s):  
Janjanam Naveen ◽  
Myneni Sukesh Babu ◽  
Ramanujam Sarathi ◽  
Ramachandran Velmurugan ◽  
Michael G. Danikas ◽  
...  

Epoxy nanocomposites reinforced with glass fiber, have been prepared with various weight percentages (1, 3, and 5 wt.%) of MgO nanofillers to improve their electrical and thermal performance. An increase in MgO nanofiller content up to 3 wt.% tends to enhance surface discharge and corona inception voltages measured using fluorescence and UHF methods, under both AC and DC voltage profiles. Reduced initial surface potential along with increased decay rate is observed after inclusion of MgO nanoparticles. Before and after the polarity reversal phenomena, heterocharge formation is observed in the bulk of test specimens. In comparison with other test samples, the 3 wt.% sample had reflected lower electric field enhancement factor. After MgO filler was added to glass fiber reinforced polymer (GFRP) composites, the coefficient of thermal expansion (CTE) has reduced, with the 3 wt.% specimen having the lowest CTE value. TGA measurements revealed an improvement in thermal stability of the GFRP nanocomposites up on the inclusion of MgO nanofillers. Overall, the GFRP nanocomposite sample filled with 3 wt.% nano-MgO outperformed the other test samples in terms of electrical and thermal performance.


Sign in / Sign up

Export Citation Format

Share Document