scholarly journals Nonlinear Control of a Magnetic Levitation System Using a New Input-Output Feedback Linearization

2016 ◽  
Vol 49 (1) ◽  
pp. 332-336 ◽  
Author(s):  
Santanu Kumar Pradhan ◽  
Bidyadhar Subudhi
2021 ◽  
Vol 11 (17) ◽  
pp. 7795
Author(s):  
Danica Rosinová ◽  
Mária Hypiusová

Nonlinear system control belongs to advanced control problems important for real plants control design. Various techniques have been developed in this field. In this paper we compare two different approaches to a nonlinear unstable Magnetic levitation system control. The first control design approach further develops our recent results on robust discrete-time pole-placement, based on convex DR-regions. The second studied approach is based on feedback linearization and the simplified development of the corresponding nonlinear control law is provided. Both approaches are compared and evaluated. The efficiency of robust discrete-time pole-placement controller is shown as well as its competitiveness in comparison with nonlinear control for Magnetic levitation system.


Author(s):  
Daniel L. Hall ◽  
Biswanath Samanta

The paper presents an approach to nonlinear control of a magnetic levitation system using artificial neural networks (ANN). A novel form of ANN, namely, single multiplicative neuron (SMN) model is proposed in place of more traditional multi-layer perceptron (MLP). SMN derives its inspiration from the single neuron computation model in neuroscience. SMN model is trained off-line, to estimate the network weights and biases, using a population based stochastic optimization technique, namely, particle swarm optimization (PSO). Both off-line training and on-line learning of SMN have been considered. The ANN based techniques have been compared with a feedback linearization approach. The development of the control algorithms is illustrated through the hardware-in-the-loop (HIL) implementation of magnetic levitation in LabVIEW environment. The controllers based on ANN performed quite well and better than the one based on feedback linearization. However, the SMN structure was much simpler than the MLP for similar performance. The simple structure and faster computation of SMN have the potential to make it a preferred candidate for implementation of real-life complex magnetic levitation systems.


Sign in / Sign up

Export Citation Format

Share Document