magnetic levitation system
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 162)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 674
Author(s):  
Paweł Majewski ◽  
Dawid Pawuś ◽  
Krzysztof Szurpicki ◽  
Wojciech P. Hunek

In the paper, a comparative case study covering different control strategies of unstable and nonlinear magnetic levitation process is investigated. Three control procedures are examined in order to fulfill the specified performance indices. Thus, a dedicated PD regulator along with the hybrid fuzzy logic PID one as well as feed-forward neural network regulator are respected and summarized according to generally understood tuning techniques. It should be emphasized that the second PID controller is strictly derived from both arbitrary chosen membership functions and those ones selected through the genetic algorithm mechanism. Simulation examples have successfully confirmed the correctness of obtained results, especially in terms of entire control process quality of the magnetic levitation system. It has been observed that the artificial-intelligence-originated approaches have outperformed the classical one in the context of control accuracy and control speed properties in contrary to the energy-saving behavior whereby the conventional method has become a leader. The feature-related compromise, which has never been seen before, along with other crucial peculiarities, is effectively discussed within this paper.


2021 ◽  
pp. 1354004
Author(s):  
Xiang Guan ◽  
Shuyue Zhang ◽  
Xing Bian ◽  
Huaiyu Chen ◽  
Jin Shang ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 10369
Author(s):  
Štefan Chamraz ◽  
Mikuláš Huba ◽  
Katarína Žáková

This paper contributes toward research on the control of the magnetic levitation plant, representing a typical nonlinear unstable system that can be controlled by various methods. This paper shows two various approaches to the solution of the controller design based on different closed loop requirements. Starting from a known unstable linear plant model—the first method is based on the two-step procedure. In the first step, the transfer function of the controlled system is modified to get a stable non-oscillatory system. In the next step, the required first-order dynamic is defined and a model-based PI controller is proposed. The closed loop time constant of this first-order model-based approach can then be used as a tuning parameter. The second set of methods is based on a simplified ultra-local linear approximation of the plant dynamics by the double-integrator plus dead-time (DIPDT) model. Similar to the first method, one possible solution is to stabilize the system by a PD controller combined with a low-pass filter. To eliminate the offset, the stabilized system is supplemented by a simple static feedforward, or by a controller proposed by means of an internal model control (IMC). Another possible approach is to apply for the DIPDT model directly a stabilizing PID controller. The considered solutions are compared to the magnetic levitation system, controlled via the MATLAB/Simulink environment. It is shown that, all three controllers, with integral action, yield much slower dynamics than the stabilizing PD control, which gives one motivation to look for alternative ways of steady-state error compensation, guaranteeing faster setpoint step responses.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012004
Author(s):  
A Winursito ◽  
G N P Pratama

Abstract Magnetic levitation system (MLS) is a nonlinear system that attracts the attention of many researchers, especially control engineers. It has wide range of application such as robotics, high-speed transportation, and many more. Unfortunately, it is not a simple task to control it. Here, we utilize state feedback controller with Linear-Quadratic Regulator (LQR) to regulate the position of a steel-ball in MLS. In addition, we also introduce the precompensator to nullify the steady-state errors. The linearized model, controller, and precompensator are simulated using Matlab. The results and simulation verify that the state feedback controller and precompensator succeed to stabilize the position of steel-ball at the equilibrium for 0.1766 seconds and no steady-state errors.


Author(s):  
S Anurag

Abstract: In this growing world when cities and towns continue to become more crowded , the modes of transportation that are currently available to us will not be able to handle the demands of these overpopulated areas. This problem can be solved by the concept of electromagnetism. Electromagnets and superconducting magnets have allowed us to create a magnetic levitating train nicknamed “Maglev” which reduces friction between track and train by floating over it instead of directly being in contact. This has a lot of potentials to create trains that require a high initial investment but later on low maintenance and helps in fast transportation thus saving time. The magnetic levitation system used by these trains play an important role in suspending the Maglev train stably and following the track quickly with the adequate gap from the side walls thus highly reducing chances of damage. This paper gives an idea about the tech aspects of maglev projects worldwide such as Germany, Japan, and USA and also discusses about various idea to bring Maglev trains in developing countries like India. Keywords: Maglev, superconducting magnets, magnetic levitation, Transrapid, lateral guidance, linear induction morot, frictionless travel.


Author(s):  
Pratik Vernekar ◽  
Vitthal Bandal

This paper presents three types of sliding mode controllers for a magnetic levitation system. First, a proportional-integral sliding mode controller (PI-SMC) is designed using a new switching surface and a proportional plus power rate reaching law. The PI-SMC is more robust than a feedback linearization controller in the presence of mismatched uncertainties and outperforms the SMC schemes reported recently in the literature in terms of the convergence rate and settling time. Next, to reduce the chattering phenomenon in the PI-SMC, a state feedback-based discrete-time SMC algorithm is developed. However, the disturbance rejection ability is compromised to some extent. Furthermore, to improve the robustness without compromising the chattering reduction benefits of the discrete-time SMC, mismatched uncertainties like sensor noise and track input disturbance are incorporated in a robust discrete-time SMC design using multirate output feedback (MROF). With this technique, it is possible to realize the effect of a full-state feedback controller without incurring the complexity of a dynamic controller or an additional discrete-time observer. Also, the MROF-based discrete-time SMC strategy can stabilize the magnetic levitation system with excellent dynamic and steady-state performance with superior robustness in the presence of mismatched uncertainties. The stability of the closed-loop system under the proposed controllers is proved by using the Lyapunov stability theory. The simulation results and analytical comparisons demonstrate the effectiveness and robustness of the proposed control schemes.


2021 ◽  
Author(s):  
Pratik Vernekar

Abstract This paper presents three types of sliding mode controllers for a magnetic levitation system. First, a proportional-integral sliding mode controller (PI-SMC) is designed using a new switching surface and a proportional plus power rate reaching law. The PI-SMC is more robust than a feedback linearization controller in the presence of mismatched uncertainties and outperforms the SMC schemes reported recently in the literature in terms of the convergence rate and settling time. Next, to reduce the chattering phenomenon in the PI-SMC, a state feedback-based discrete-time SMC algorithm is developed. However, the disturbance rejection ability is compromised to some extent. Furthermore, to improve the robustness without compromising the chattering reduction benefits of the discrete-time SMC, mismatched uncertainties like sensor noise and track input disturbance are incorporated in a robust discrete-time SMC design using multirate output feedback (MROF). With this technique, it is possible to realize the effect of a full-state feedback controller without incurring the complexity of a dynamic controller or an additional discrete-time observer. Also, the MROF-based discrete-time SMC strategy can stabilize the magnetic levitation system with excellent dynamic and steady-state performance with superior robustness in the presence of mismatched uncertainties. The stability of the closed-loop system under the proposed controllers is proved by using the Lyapunov stability theory. The simulation results and analytical comparisons demonstrate the effectiveness and robustness of the proposed control schemes.


2021 ◽  
Author(s):  
Pratik Vernekar ◽  
Vitthal Bandal

This paper presents three types of sliding mode controllers for a magnetic levitation system. First, a proportional-integral sliding mode controller (PI-SMC) is designed using a new switching surface and a proportional plus power rate reaching law. The PI-SMC is more robust than a feedback linearization controller in the presence of mismatched uncertainties and outperforms the SMC schemes reported recently in the literature in terms of the convergence rate and settling time. Next, to reduce the chattering phenomenon in the PI-SMC, a state feedback-based discrete-time SMC algorithm is developed. However, the disturbance rejection ability is compromised to some extent. Furthermore, to improve the robustness without compromising the chattering reduction benefits of the discrete-time SMC, mismatched uncertainties like sensor noise and track input disturbance are incorporated in a robust discrete-time SMC design using multirate output feedback (MROF). With this technique, it is possible to realize the effect of a full-state feedback controller without incurring the complexity of a dynamic controller or an additional discrete-time observer. Also, the MROF-based discrete-time SMC strategy can stabilize the magnetic levitation system with excellent dynamic and steady-state performance with superior robustness in the presence of mismatched uncertainties. The stability of the closed-loop system under the proposed controllers is proved by using the Lyapunov stability theory. The simulation results and analytical comparisons demonstrate the effectiveness and robustness of the proposed control schemes.


Sign in / Sign up

Export Citation Format

Share Document