scholarly journals Centralized controller design using state space concept

2016 ◽  
Vol 49 (9) ◽  
pp. 62-67 ◽  
Author(s):  
Devi C. Arati ◽  
S. Narayanan
2010 ◽  
Vol 164 ◽  
pp. 177-182 ◽  
Author(s):  
Lukas Březina ◽  
Tomáš Březina

The paper deals with development of uncertain dynamics model of a six DOF parallel mechanism (Stewart platform) suitable for H-infinity controller design. The model is based on linear state space models of the machine obtained by linearization of the SimMechanics model. The linearization is performed for two positions of the machine in its workspace. It is the nominal position and the position where each link of the machine reaches its maximal length. The uncertainties are then represented as differences between parameters of corresponding state-space matrices. The uncertain state space model is then obtained using upper linear fractional transformation. There are also mentioned several notes regarding H-infinity controller designed according to the obtained model.


2018 ◽  
Vol 132 ◽  
pp. 187-198
Author(s):  
Hamid Fasih ◽  
Saeed Tavakoli ◽  
Jafar Sadeghi ◽  
Hamed Torabi

Author(s):  
Ji-Chul Ryu ◽  
Vivek Sangwan ◽  
Sunil K. Agrawal

This paper presents a methodology for design of mobile vehicles, mounted with underactuated manipulators operating in a horizontal plane, such that the combined system is differentially flat. A challenging question of how to perform point-to-point motions in the state space of such a highly nonlinear system, in spite of the absence of some actuators in the arm, is answered in this paper. We show that, by appropriate inertia distribution of the links and addition of torsion springs at the joints, a range of underactuated designs is possible, where the underactuated mobile manipulator system is differentially flat. The differential flatness property allows one to efficiently solve the problem of trajectory planning and feedback controller design for point-to-point motions in the state space. The proposed method is illustrated by the example of a mobile vehicle with an underactuated three-link manipulator.


2019 ◽  
Vol 9 (2) ◽  
pp. 4030-4036 ◽  
Author(s):  
Z. R. Labidi ◽  
H. Schulte ◽  
A. Mami

In this paper, a systematic controller design for a photovoltaic generator with boost converter using integral state feedback control is proposed. It is demonstrated that the state–space feedback enables the extraction of maximum available power under variable loads. For this purpose, a control-oriented state-space model of a photovoltaic array connected to a DC load by a boost converter is derived. This model is then linearized by one working point, but no further simplifications are made. The design-oriented model contains the dynamics of PV generator, boost converter, and the load. The controller design is based on the augmented model with an integral component. The controller is validated by a detailed plant model implemented in Simscape. The robustness of the controller with variable solar irradiation and DC load changes is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document