scholarly journals Unknown input decoupling and estimation in observer design for Boolean control networks * *This work is supported by the Federal State of Rhineland- Palatinate, Germany in the framework of the project \Complex Data Analysis in Life Sciences and Biotechnology (BioComp)".

2017 ◽  
Vol 50 (1) ◽  
pp. 2917-2922 ◽  
Author(s):  
Zhihua Zhang ◽  
Thomas Leifeld ◽  
Ping Zhang
2004 ◽  
Vol 95 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Hongyuan Sun ◽  
Qiye Wen ◽  
Peixin Zhang ◽  
Jianhong Liu ◽  
Qianling Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-29 ◽  
Author(s):  
Xingxing Xiong ◽  
Shubo Liu ◽  
Dan Li ◽  
Zhaohui Cai ◽  
Xiaoguang Niu

With the advent of the era of big data, privacy issues have been becoming a hot topic in public. Local differential privacy (LDP) is a state-of-the-art privacy preservation technique that allows to perform big data analysis (e.g., statistical estimation, statistical learning, and data mining) while guaranteeing each individual participant’s privacy. In this paper, we present a comprehensive survey of LDP. We first give an overview on the fundamental knowledge of LDP and its frameworks. We then introduce the mainstream privatization mechanisms and methods in detail from the perspective of frequency oracle and give insights into recent studied on private basic statistical estimation (e.g., frequency estimation and mean estimation) and complex statistical estimation (e.g., multivariate distribution estimation and private estimation over complex data) under LDP. Furthermore, we present current research circumstances on LDP including the private statistical learning/inferencing, private statistical data analysis, privacy amplification techniques for LDP, and some application fields under LDP. Finally, we identify future research directions and open challenges for LDP. This survey can serve as a good reference source for the research of LDP to deal with various privacy-related scenarios to be encountered in practice.


2019 ◽  
Vol 41 (15) ◽  
pp. 4311-4321 ◽  
Author(s):  
Mai Viet Thuan ◽  
Dinh Cong Huong ◽  
Nguyen Huu Sau ◽  
Quan Thai Ha

This paper addresses the problem of unknown input fractional-order functional state observer design for a class of fractional-order time-delay nonlinear systems. The nonlinearities consist of two parts where one part is assumed to satisfy both the one-sided Lipschitz condition and the quadratically inner-bounded condition and the other is not necessary to be Lipschitz and can be regarded as an unknown input, making the wider class of considered nonlinear systems. By taking the advantages of recent results on Caputo fractional derivative of a quadratic function, we derive new sufficient conditions with the form of linear matrix inequalities (LMIs) to guarantee the asymptotic stability of the systems. Four examples are also provided to show the effectiveness and applicability of the proposed method.


2017 ◽  
Author(s):  
Baekdoo Kim ◽  
Thahmina Ali ◽  
Carlos Lijeron ◽  
Enis Afgan ◽  
Konstantinos Krampis

ABSTRACTBackgroundProcessing of Next-Generation Sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized post-analysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers, towards seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform.FindingsWe present an approach for abstracting the complex data operations of multi-step, bioinformatics pipelines for NGS data analysis. As examples, we have deployed two pipelines for RNAseq and CHIPseq, pre-configured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines is as simple as running a single bioinformatics tool. This is achieved through a “meta-script” that automatically starts the Bio-Docklets, and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface (API). The pipelne output is post-processed using the Visual Omics Explorer (VOE) framework, providing interactive data visualizations that users can access through a web browser.ConclusionsThe goal of our approach is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts, on any computing environment whether a laboratory workstation, university computer cluster, or a cloud service provider,. Besides end-users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets.


Sign in / Sign up

Export Citation Format

Share Document