scholarly journals An Approximation Approach for an Integrated Part Quality Inspection and Preventive Maintenance Planning in a Nonlinear Deteriorating Serial Multi-stage Manufacturing System

2018 ◽  
Vol 51 (11) ◽  
pp. 270-275 ◽  
Author(s):  
M. Rezaei-Malek ◽  
A. Siadat ◽  
J.-Y. Dantan ◽  
R. Tavakkoli-Moghaddam
2018 ◽  
Vol 57 (15-16) ◽  
pp. 4880-4897 ◽  
Author(s):  
Mohammad Rezaei-Malek ◽  
Mehrdad Mohammadi ◽  
Jean-Yves Dantan ◽  
Ali Siadat ◽  
Reza Tavakkoli-Moghaddam

Author(s):  
Mohammed Alkahtani ◽  
Muhammad Omair ◽  
Qazi Salman Khalid ◽  
Ghulam Hussain ◽  
Imran Ahmad ◽  
...  

The management of a controllable production in the manufacturing system is essential to achieve viable advantages, particularly during emergency conditions. Disasters, either man-made or natural, affect production and supply chains negatively with perilous effects. On the other hand, flexibility and resilience to manage the perpetuated risks in a manufacturing system are vital for achieving a controllable production rate. Still, these performances are strongly dependent on the multi-criteria decision making in the working environment with the policies launched during the crisis. Undoubtedly, health stability in a society generates ripple effects in the supply chain due to high demand fluctuation, likewise due to the Coronavirus disease-2019 (COVID-19) pandemic. Incorporation of dependent demand factors to manage the risk from uncertainty during this pandemic has been a challenge to achieve a viable profit for the supply chain partners. A non-linear supply chain management model is developed with a controllable production rate to provide an economic benefit to the manufacturing firm in terms of the optimized total cost of production and to deal with the different situations under variable demand. The costs in the model are set as fuzzy to cope up with the uncertain conditions created by lasting pandemic. A numerical experiment is performed by utilizing the data set of the multi-stage manufacturing firm. The optimal results provide support for the industrial managers based on the proactive plan by the optimal utilization of the resources and controllable production rate to cope with the emergencies in a pandemic.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jianfei Ye ◽  
Huimin Ma

In order to solve the joint optimization of production scheduling and maintenance planning problem in the flexible job-shop, a multiobjective joint optimization model considering the maximum completion time and maintenance costs per unit time is established based on the concept of flexible job-shop and preventive maintenance. A weighted sum method is adopted to eliminate the index dimension. In addition, a double-coded genetic algorithm is designed according to the problem characteristics. The best result under the circumstances of joint decision-making is obtained through multiple simulation experiments, which proves the validity of the algorithm. We can prove the superiority of joint optimization model by comparing the result of joint decision-making project with the result of independent decision-making project under fixed preventive maintenance period. This study will enrich and expand the theoretical framework and analytical methods of this problem; it provides a scientific decision analysis method for enterprise to make production plan and maintenance plan.


2010 ◽  
Vol 59 (3) ◽  
pp. 496-506 ◽  
Author(s):  
Mustapha Nourelfath ◽  
Mohamed-Chahir Fitouhi ◽  
Mahdi Machani

2020 ◽  
Vol 28 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Sofiene Dellagi ◽  
Wajdi Trabelsi ◽  
Zied Hajej ◽  
Nidhal Rezg

This study develops an analytical model in order to determine an optimal integrated maintenance plan and spare parts management. We consider a manufacturing system, producing only one type of product, over a finite planning horizon H equal to the sum of all production periods and the production quantity of each period is known. This system is subject to a continuously increasing degradation rate. That is why a preventive maintenance strategy is adopted in order to face the increasing failure rate. We noted that contrarily to the majority of studies in literature, we take into account the impact of the production rate variation on the manufacturing system degradation and consequently on the adopted optimal maintenance strategy. In addition, the real need of spare parts relative to the scheduled maintenance actions is taken into account. In fact, the purpose of our study consists at determining the optimal preventive maintenance frequency and the optimal quantity of spare parts to order by minimizing a total cost, including maintenance and spare parts management. Numerical examples are presented along with a sensitivity study in order to prove the use of the developed model for deriving the optimal integrated strategy for any instance of the problem.


Sign in / Sign up

Export Citation Format

Share Document