rate variation
Recently Published Documents


TOTAL DOCUMENTS

1093
(FIVE YEARS 269)

H-INDEX

69
(FIVE YEARS 10)

Genetics ◽  
2022 ◽  
Author(s):  
Marinela Dukić ◽  
Kirsten Bomblies

Abstract The number and placement of meiotic crossover events during meiosis has important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here we generate genetic maps for two diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in A. thaliana.


2022 ◽  
Author(s):  
Shu Xie ◽  
Luis Valente ◽  
Rampal Etienne

The application of state-dependent speciation and extinction (SSE) models to phylogenetic trees has revealed an important role for traits in diversification. However, this role remains comparatively unexplored on islands, which can include multiple independent clades resulting from different colonization events. Here, we perform a robustness study to identify how trait-dependence in rates of island colonization, extinction and speciation (CES rates) affects the estimation accuracy of a phylogenetic model that assumes no rate variation between trait states. We extend the DAISIE (Dynamic Assembly of Islands through Speciation, Immigration and Extinction) simulation model to include state-dependent rates, and evaluate the robustness of the DAISIE inference model using simulated data. Our results show that when the CES rate differences between trait states are moderate, DAISIE shows negligible error for a variety of island diversity metrics. However, for large differences in speciation rates, we find large errors when reconstructing clade size variation and non-endemic species diversity through time. We conclude that for many biologically realistic scenarios with trait-dependent speciation and colonization, island diversity dynamics can be accurately estimated without the need to explicitly model trait dynamics. Nonetheless, our new simulation model may provide a useful tool for studying patterns of trait variation.


Author(s):  
Alissa M. Williams ◽  
Olivia G. Carter ◽  
Evan S. Forsythe ◽  
Hannah K. Mendoza ◽  
Daniel B. Sloan

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 520
Author(s):  
Niccolò Paccotti ◽  
Alessandro Chiadò ◽  
Chiara Novara ◽  
Paola Rivolo ◽  
Daniel Montesi ◽  
...  

A sharpened control over the parameters affecting the synthesis of plasmonic nanostructures is often crucial for their application in biosensing, which, if based on surface-enhanced Raman spectroscopy (SERS), requires well-defined optical properties of the substrate. In this work, a method for the microfluidic synthesis of Ag nanoparticles (NPs) on porous silicon (pSi) was developed, focusing on achieving a fine control over the morphological characteristics and spatial distribution of the produced nanostructures to be used as SERS substrates. To this end, a pSi membrane was integrated in a microfluidic chamber in which the silver precursor solution was injected, allowing for the real-time monitoring of the reaction by UV–Vis spectroscopy. The synthesis parameters, such as the concentration of the silver precursor, the temperature, and the flow rate, were varied in order to study their effects on the final silver NPs’ morphology. Variations in the flow rate affected the size distribution of the NPs, whereas both the temperature and the concentration of the silver precursor strongly influenced the rate of the reaction and the particle size. Consistently with the described trends, SERS tests using 4-MBA as a probe showed how the flow rate variation affected the SERS enhancement uniformity, and how the production of larger NPs, as a result of an increase in temperature or of the concentration of the Ag precursor, led to an increased SERS efficiency.


Author(s):  
Rachmawati Achadiah ◽  
Putu Hadi Setyarini ◽  
Mas Ayu Pambayoen ◽  
Irfan H. Djunaidi ◽  
Dan Sti Azizah

The purpose of this study was to determine the effect of feed rate and depth of cut on the surface roughness of Al-Mg aluminum using a DIY CNC Milling Machine and Krisbow Universal Milling Machine as a comparison. The open-loop control system is a control system used in the design of DIY CNC Milling machines. A PC with Mach3 software is used as a PC Based Direct Digital Controller to control the system. In this study, the feed rate variation 24 mm/minute and 42 mm/minute and depth of cut 0.25 mm, 0.5 mm, and 0.75 mm were used. After the face milling process, the surface roughness test was carried out using the Mitoyo Surface Roughness Tester to determine the level of surface roughness of the machining results the DIY Milling Machine and Krisbow Universal Milling Machine as a comparison. The results showed that as the feed rate and depth of cut increased, the surface roughness values of both tools increased.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8338
Author(s):  
Kunhang Li ◽  
Wenqian Xu ◽  
Hua-Shu Dou

The flow behavior inside a miniature centrifugal pump, under a periodic pulse flow rate, was studied by means of numerical simulation. For a given incoming periodic pulse flow with a sine wave, the performance of the centrifugal pump was investigated in the section with increasing flow and the section with decreasing flow, and the special points of the flow rate and the periodic flow were identified. Further, the energy gradient method and the Q-criterion were adopted to analyze the internal vertical structure and flow stability. It was found that the regions with large variations in velocity and total pressure were mainly located at the leading edge of the suction surface and the middle area of the pressure surface of the blades. Irregular pressure fluctuation frequency under the periodic pulse flow was shown; this was mainly concentrated in the low-frequency zones close to the impeller’s rotational frequency. In addition, for the same flow rate in the periodic pulse flow, the pressure frequency fluctuation for the increasing flow rate section was higher than that observed for the decreasing flow rate section. It was found that the most unstable sections appeared in the first half-period of the flow rate variation (large flow rate), according to the distributions of the Q criteria of the vortex and the energy gradient function K. In this section, motions of strong vortices led to large gradients of the mechanical energy.


2021 ◽  
Vol 11 (24) ◽  
pp. 11698
Author(s):  
Marius Dorin Lulea ◽  
Vlad Iordache ◽  
Ilinca Năstase

Statistics show that most fires occur in civil residential buildings. Most casualties are due to the inhalation of hot air loaded with smoke, leading to intoxication with substances harmful to the human body. This research aimed to develop a CFD model that relates the operation of the sprinkler system to the operation of the ventilation system through the air temperature in a specific point close to the sprinkler position. A real-scale experiment was carried out, and a CDF model was developed. Several parameters of the CFD model (thermal conductivity of the experimental test room walls, numerical grid elements’ dimensions, burner heat release rate variation) were imposed to the model, so that the resulting entire time variation of the temperature next to the sprinkler location corresponds to the real measured variation. Two other experiments were used to validate the numerical model. Besides the air temperature, at this point, other essential parameters were determined in the entire experimental space: indoor air temperature, visibility, oxygen concentration, and carbon dioxide concentration. We found that if the ventilation rate increases, the indoor temperatures in that specific point decrease, and the sprinkler is activated later or, in some cases, it might never be activated. However, this conclusion is not valid for the entire analyzed space, as the ventilation system alongside the natural air movement imposes specific air speed and specific temperature distribution inside the analyzed space.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2673
Author(s):  
Jeffrey P. Mower ◽  
Lilly Hanley ◽  
Kirsten Wolff ◽  
Natalia Pabón-Mora ◽  
Favio González

Aragoa, comprising 19 high-altitude North Andean species, is one of three genera in the Plantagineae (Plantaginaceae, Lamiales), along with Littorella and Plantago. Based primarily on plastid data and nuclear ITS, Aragoa is sister to a clade of Littorella + Plantago, but Plantagineae relationships have yet to be assessed using multigene datasets from the nuclear and mitochondrial genomes. Here, complete mitogenomes were assembled for two species of Aragoa (A. abietina and A. cleefii). The mitogenomes of both species have a typical suite of genes for 34 proteins, 17 tRNAs, and three rRNAs. The A. abietina mitogenome assembled into a simple circular map, with no large repeats capable of producing alternative isoforms. The A. cleefii mitogenomic map was more complex, involving two circular maps bridged by a substoichiometric linear fragment. Phylogenetics of three mitochondrial genes or the nuclear rRNA repeat placed Aragoa as sister to Littorella + Plantago, consistent with previous studies. However, P. nubicola, the sole representative of subg. Bougueria, was nested within subg. Psyllium based on the mitochondrial and nuclear data, conflicting with plastid-based analyses. Phylogenetics of the nuclear rRNA repeat provided better resolution overall, whereas relationships from mitochondrial data were hindered by extensive substitution rate variation among lineages.


Author(s):  
Rajni Sudhir ◽  
Nadim Jaafar ◽  
Qingyou Du ◽  
Andriy Sukhodub ◽  
Sofija Jovanović ◽  
...  

Abstract SUR2A is an ABC protein serving as a regulatory subunit of ATP-sensitive (KATP) channels. An increase in SUR2A levels is cardioprotective and it is a potential therapeutic strategy against ischaemic heart disease, heart failure and other diseases. However, whether overexpression of this protein has any adverse effects is yet to be fully understood. Objectives Here, we examined the heart rate and the heart rate diurnal variation in mice overexpressing SUR2A (SUR2A+) and their littermate controls (WT) using ECG telemetry that was continuously recorded for 14 days (days 8–23 post-radiotransmitter implantation). Methods Using SigmaPlot 14.0 and Microsoft Excel, Area Under the Curve (AUC) for each parameter was calculated and plotted in a graph. Results Both WT and SUR2A+ mice were more physically active during nights and there were no significant differences between two phenotypes. Physical activity was associated with increased heart rate in both phenotypes, but there were no differences in heart rate between phenotypes irrespective of physical activity or time of the day. A diurnal heart rate variation was preserved in the SUR2A+ mice. As area under the curve (AUC) analysis has the potential to reveal differences that are invisible with other statistical methods, we compared AUC of heart rate in SUR2A+ and WT mice. This analysis did not yield anything different from traditional analysis. Conclusions We conclude that increased SUR2A levels are not associated with changes in physical activity, heart rate and/or circadian rhythm influence on the heart rate. This lack of adverse effects supports a notion that manipulation with SUR2A levels is a promising cardioprotective strategy.


Sign in / Sign up

Export Citation Format

Share Document