scholarly journals A Novel Mathematical Model for a Discrete Speed Pollution Routing Problem with Time Windows in a Colombian Context

2021 ◽  
Vol 54 (1) ◽  
pp. 229-235
Author(s):  
M.V. Gutiérrez-Padilla ◽  
D. Morillo-Torres ◽  
G. Gatica
Author(s):  
Sameh M. Saad ◽  
Ramin Bahadori

In most classic vehicle routing problems, the main goal is to minimise the total travel time or distance while, the green vehicle routing problem, in addition to the stated objectives, also focuses on minimising fuel costs and greenhouse gas emissions, including carbon dioxide emissions. In this research, a new approach in Pollution Routing Problem (PRP) is proposed to minimise the CO2 emission by investigating vehicle weight fill level in length of each route. The PRP with a homogeneous fleet of vehicles, time windows, considering the possibility of split delivery and constraint of minimum shipment weight that must be on the vehicle in each route is investigated simultaneously. The mathematical model is developed and implemented using a simulated annealing algorithm which is programmed in MATLAB software. The generated results from all experiments demonstrated that the application of the proposed mathematical model led to the reduction in CO2 emission.


2020 ◽  
Vol 26 (4) ◽  
pp. 174-184
Author(s):  
Thi Diem Chau Le ◽  
Duy Duc Nguyen ◽  
Judit Oláh ◽  
Miklós Pakurár

AbstractThis study describes a pickup and delivery vehicle routing problem, considering time windows in reality. The problem of tractor truck routes is formulated by a mixed integer programming model. Besides this, three algorithms - a guided local search, a tabu search, and simulated annealing - are proposed as solutions. The aims of our study are to optimize the number of internal tractor trucks used, and create optimal routes in order to minimize total logistics costs, including the fixed and variable costs of an internal vehicle group and the renting cost of external vehicles. Besides, our study also evaluates both the quality of solutions and the time to find optimal solutions to select the best suitable algorithm for the real problem mentioned above. A novel mathematical model is formulated by OR tools for Python. Compared to the current solution, our results reduced total costs by 18%, increased the proportion of orders completed by internal vehicles (84%), and the proportion of orders delivered on time (100%). Our study provides a mathematical model with time constraints and large job volumes for a complex distribution network in reality. The proposed mathematical model provides effective solutions for making decisions at logistics companies. Furthermore, our study emphasizes that simulated annealing is a more suitable algorithm than the two others for this vehicle routing problem.


2011 ◽  
Vol 30 (2) ◽  
pp. 83-92 ◽  
Author(s):  
R. Tavakkoli-Moghaddam ◽  
M. Gazanfari ◽  
M. Alinaghian ◽  
A. Salamatbakhsh ◽  
N. Norouzi

Author(s):  
Intaek Gong ◽  
Kyungho Lee ◽  
Jaewon Kim ◽  
Yunhong Min ◽  
Kwang Sup Shin

A lot of previous research have proposed various frameworks and algorithms to optimize routes to reduce the total transportation cost, which accounts for over 70% of overall logistics cost. However, it is very hard to find the cases applied the mathematical models or algorithms to the practical business environment cases, especially daily operating logistics services like convenient stores. Most of previous research have considered the developing an optimal algorithm which can solve the mathematical problem within the practical time while satisfying all constraints such as the capacity of delivery and pick-up, and time windows. For the daily pick-up and delivery service like supporting several convenient stores, it is required to consider the unit transporting container as well as the demand, capacity of trucks, traveling distance and traffic congestion. Especially, the reusable transporting container, trays, should be regarded as the important asset of logistics center. However, if the mathematical model focuses on only satisfying constraints related delivery and not considering the cost of trays, it is often to leave the empty trays on the pick-up points when there is not enough space in the track. In this research, it has been proposed to build the mathematical model for optimizing pick-up and delivery plans by extending the general vehicle routing problem of simultaneous delivery and pickup with time windows while considering left-over cost. With the numerical experiments, it has been proved that the proposed model may reduce the total delivery cost. It may be possible to apply the proposed approach to the various logistics business which uses the reusable transporting container like shipping containers, refrigerating containers, trays, and pallets.


Author(s):  
P. Kabcome ◽  
T. Mouktonglang

This paper presents a mathematical model to solve the vehicle routing problem with soft time windows (VRPSTW) and distribution of products with multiple categories. In addition, we include multiple compartments and trips. Each compartment is dedicated to a single type of product. Each vehicle is allowed to have more than one trip, as long as it corresponds to the maximum distance allowed in a workday. Numerical results show the effectiveness of our model.


Sign in / Sign up

Export Citation Format

Share Document