scholarly journals Tractable approximate knowledge fusion using the Horn fragment of serial propositional dynamic logic

2010 ◽  
Vol 51 (3) ◽  
pp. 346-362 ◽  
Author(s):  
Barbara Dunin-Ke¸plicz ◽  
Linh Anh Nguyen ◽  
Andrzej Szałas
2019 ◽  
Vol 29 (8) ◽  
pp. 1289-1310
Author(s):  
Linh Anh Nguyen

Abstract Berman and Paterson proved that test-free propositional dynamic logic (PDL) is weaker than PDL. One would raise questions: does a similar result also hold for extensions of PDL? For example, is test-free converse-PDL (CPDL) weaker than CPDL? In what circumstances the test operator can be eliminated without reducing the expressive power of a PDL-based logical formalism? These problems have not yet been studied. As the description logics $\mathcal{ALC}_{trans}$ and $\mathcal{ALC}_{reg}$ are, respectively, variants of test-free PDL and PDL, there is a concept of $\mathcal{ALC}_{reg}$ that is not equivalent to any concept of $\mathcal{ALC}_{trans}$. Generalizing this, we prove that there is a concept of $\mathcal{ALC}_{reg}$ that is not equivalent to any concept of the logic that extends $\mathcal{ALC}_{trans}$ with inverse roles, nominals, qualified number restrictions, the universal role and local reflexivity of roles. We also provide some results for the case with RBoxes and TBoxes. One of them states that tests can be eliminated from TBoxes of the deterministic Horn fragment of $\mathcal{ALC}_{reg}$.


2010 ◽  
Vol 7 (3) ◽  
pp. 617-642 ◽  
Author(s):  
Barbara Dunin-Kęplicz ◽  
Anh Nguyen ◽  
Andrzej Szałas

In this paper we present a framework for fusing approximate knowledge obtained from various distributed, heterogenous knowledge sources. This issue is substantial in modeling multi-agent systems, where a group of loosely coupled heterogeneous agents cooperate in achieving a common goal. In paper [5] we have focused on defining general mechanism for knowledge fusion. Next, the techniques ensuring tractability of fusing knowledge expressed as a Horn subset of propositional dynamic logic were developed in [13,16]. Propositional logics may seem too weak to be useful in real-world applications. On the other hand, propositional languages may be viewed as sublanguages of first-order logics which serve as a natural tool to define concepts in the spirit of description logics [2]. These notions may be further used to define various ontologies, like e.g. those applicable in the Semantic Web. Taking this step, we propose a framework, in which our Horn subset of dynamic logic is combined with deductive database technology. This synthesis is formally implemented in the framework of HSPDL architecture. The resulting knowledge fusion rules are naturally applicable to real-world data.


1997 ◽  
Vol 4 (8) ◽  
Author(s):  
Jesper G. Henriksen ◽  
P. S. Thiagarajan

A simple extension of the propositional temporal logic of linear<br />time is proposed. The extension consists of strengthening the until<br />operator by indexing it with the regular programs of propositional<br />dynamic logic (PDL). It is shown that DLTL, the resulting logic, is<br />expressively equivalent to S1S, the monadic second-order theory<br />of omega-sequences. In fact a sublogic of DLTL which corresponds<br />to propositional dynamic logic with a linear time semantics is<br />already as expressive as S1S. We pin down in an obvious manner<br />the sublogic of DLTL which correponds to the first order fragment<br />of S1S. We show that DLTL has an exponential time decision<br />procedure. We also obtain an axiomatization of DLTL. Finally,<br />we point to some natural extensions of the approach presented<br />here for bringing together propositional dynamic and temporal<br />logics in a linear time setting.


Sign in / Sign up

Export Citation Format

Share Document