horn fragment
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Bartosz Bednarczyk ◽  
Robert Ferens ◽  
Piotr Ostropolski-Nalewaja

The chase is a famous algorithmic procedure in database theory with numerous applications in ontology-mediated query answering. We consider static analysis of the chase termination problem, which asks, given set of TGDs, whether the chase terminates on all input databases. The problem was recently shown to be undecidable by Gogacz et al. for sets of rules containing only ternary predicates. In this work, we show that undecidability occurs already for sets of single-head TGD over binary vocabularies. This question is relevant since many real-world ontologies, e.g., those from the Horn fragment of the popular OWL, are of this shape.


2020 ◽  
Vol 34 (03) ◽  
pp. 3080-3087
Author(s):  
Sen Zheng ◽  
Renate Schmidt

We consider the following query answering problem: Given a Boolean conjunctive query and a theory in the Horn loosely guarded fragment, the aim is to determine whether the query is entailed by the theory. In this paper, we present a resolution decision procedure for the loosely guarded fragment, and use such a procedure to answer Boolean conjunctive queries against the Horn loosely guarded fragment. The Horn loosely guarded fragment subsumes classes of rules that are prevalent in ontology-based query answering, such as Horn ALCHOI and guarded existential rules. Additionally, we identify star queries and cloud queries, which using our procedure, can be answered against the loosely guarded fragment.


2019 ◽  
Vol 29 (8) ◽  
pp. 1289-1310
Author(s):  
Linh Anh Nguyen

Abstract Berman and Paterson proved that test-free propositional dynamic logic (PDL) is weaker than PDL. One would raise questions: does a similar result also hold for extensions of PDL? For example, is test-free converse-PDL (CPDL) weaker than CPDL? In what circumstances the test operator can be eliminated without reducing the expressive power of a PDL-based logical formalism? These problems have not yet been studied. As the description logics $\mathcal{ALC}_{trans}$ and $\mathcal{ALC}_{reg}$ are, respectively, variants of test-free PDL and PDL, there is a concept of $\mathcal{ALC}_{reg}$ that is not equivalent to any concept of $\mathcal{ALC}_{trans}$. Generalizing this, we prove that there is a concept of $\mathcal{ALC}_{reg}$ that is not equivalent to any concept of the logic that extends $\mathcal{ALC}_{trans}$ with inverse roles, nominals, qualified number restrictions, the universal role and local reflexivity of roles. We also provide some results for the case with RBoxes and TBoxes. One of them states that tests can be eliminated from TBoxes of the deterministic Horn fragment of $\mathcal{ALC}_{reg}$.


2019 ◽  
Vol 64 ◽  
pp. 147-179
Author(s):  
Zhiqiang Zhuang ◽  
Zhe Wang ◽  
Kewen Wang ◽  
James Delgrande

AGM contraction and revision assume an underlying logic that contains propositional logic. Consequently, this assumption excludes many useful logics such as the Horn fragment of propositional logic and most description logics. Our goal in this paper is to generalise AGM contraction and revision to (near-)arbitrary fragments of classical first-order logic. To this end, we first define a very general logic that captures these fragments. In so doing, we make the modest assumptions that a logic contains conjunction and that information is expressed by closed formulas or sentences. The resulting logic is called first-order conjunctive logic or FC logic for short. We then take as the point of departure the AGM approach of constructing contraction functions through epistemic entrenchment, that is the entrenchment-based contraction. We redefine entrenchment-based contraction in ways that apply to any FC logic, which we call FC contraction. We prove a representation theorem showing its compliance with all the AGM contraction postulates except for the controversial recovery postulate. We also give methods for constructing revision functions through epistemic entrenchment which we call FC revision; which also apply to any FC logic. We show that if the underlying FC logic contains tautologies then FC revision complies with all the AGM revision postulates. Finally, in the context of FC logic, we provide three methods for generating revision functions via a variant of the Levi Identity, which we call contraction, withdrawal and cut generated revision, and explore the notion of revision equivalence. We show that withdrawal and cut generated revision coincide with FC revision and so does contraction generated revision under a finiteness condition.


10.29007/fl6v ◽  
2018 ◽  
Author(s):  
Przemysław Andrzej Wałęga

Halpern-Shoham logic (HS) is a very expressive and elegant formalism for interval temporal reasoning in which the satisfiability problem is undecidable. One of the methods to obtain HS-fragments of lower computational complexity is to adopt the softened (reflexive) seman- tics of the accessibility relations. In the paper we consider disallowing punctual intervals in reflexive semantics. We show that in this case we gain additional expressive power, which over discrete orders of time points results in PSpace-hardness of the Horn fragment of HS without diamond modal operators is and in undecidability of the core fragment of HS.


2018 ◽  
Vol 62 ◽  
pp. 829-877 ◽  
Author(s):  
Sebastian Brandt ◽  
Elem Güzel Kalaycı ◽  
Vladislav Ryzhikov ◽  
Guohui Xiao ◽  
Michael Zakharyaschev

We propose a novel framework for ontology-based access to temporal log data using a datalog extension datalogMTL of the Horn fragment of the metric temporal logic MTL. We show that datalogMTL is EXPSPACE-complete even with punctual intervals, in which case full MTL is known to be undecidable. We also prove that nonrecursive datalogMTL is PSPACE-complete for combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases that nonrecursive datalogMTL programs can express complex temporal concepts from typical user queries and thereby facilitate access to temporal log data. Our experiments with Siemens turbine data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient and scale on large datasets.


Author(s):  
Andre Hernich ◽  
Carsten Lutz ◽  
Fabio Papacchini ◽  
Frank Wolter

In ontology-mediated querying with an expressive description logic L, two desirable properties of a TBox T are (1) being able to replace T with a TBox formulated in the Horn-fragment of L without affecting the answers to conjunctive queries, and (2) that every conjunctive query can be evaluated in PTime w.r.t. T. We investigate in which cases (1) and (2) are equivalent, finding that the answer depends on whether the unique name assumption (UNA) is made, on the description logic under consideration, and on the nesting depth of quantifiers in the TBox. We also clarify the relationship between query evaluation with and without UNA and consider natural variations of property (1).


Author(s):  
Nadia Creignou ◽  
Adrian Haret ◽  
Odile Papini ◽  
Stefan Woltran

In line with recent work on belief change in fragments of propositional logic, we study belief update in the Horn fragment. We start from the standard KM postulates used to axiomatize belief update operators; these postulates lend themselves to semantic characterizations in terms of partial (resp. total) preorders on possible worlds. Since the Horn fragment is not closed under disjunction, the standard postulates have to be adapted for the Horn fragment. Moreover, a restriction on the preorders (i.e., Horn compliance) and additional postulates are needed to obtain sensible characterizations for the Horn fragment, and this leads to our main contribution: a representation result which shows that the class of update operators captured by Horn compliant partial (resp. total) preorders over possible worlds is precisely that given by the adapted and augmented Horn update postulates. With these results at hand, we provide concrete Horn update operators and are able to shed light on Horn revision operators based on partial preorders.


2018 ◽  
Vol 61 ◽  
pp. 807-834 ◽  
Author(s):  
Nadia Creignou ◽  
Raïda Ktari ◽  
Odile Papini

Belief change within the framework of fragments of propositional logic is one of the main and recent challenges in the knowledge representation research area. While previous research works focused on belief revision, belief merging, and belief contraction, the problem of belief update within fragments of classical logic has not been addressed so far. In the context of revision, it has been proposed to refine existing operators so that they operate within propositional fragments, and that the result of revision remains in the fragment under consideration. This approach is not restricted to the Horn fragment but also applicable to other propositional fragments like Krom and affine fragments. We generalize this notion of refinement to any belief change operator. We then focus on a specific belief change operation, namely belief update. We investigate the behavior of the refined update operators with respect to satisfaction of the KM postulates and highlight differences between revision and update in this context.


Sign in / Sign up

Export Citation Format

Share Document