Study on unit commitment problem considering wind power and pumped hydro energy storage

Author(s):  
Zeng Ming ◽  
Zhang Kun ◽  
Wang Liang
2020 ◽  
Vol 12 (23) ◽  
pp. 10100
Author(s):  
Khalid Alqunun ◽  
Tawfik Guesmi ◽  
Abdullah F. Albaker ◽  
Mansoor T. Alturki

This paper presents a modified formulation for the wind-battery-thermal unit commitment problem that combines battery energy storage systems with thermal units to compensate for the power dispatch gap caused by the intermittency of wind power generation. The uncertainty of wind power is described by a chance constraint to escape the probabilistic infeasibility generated by classical approximations of wind power. Furthermore, a mixed-integer linear programming algorithm was applied to solve the unit commitment problem. The uncertainty of wind power was classified as a sub-problem and separately computed from the master problem of the mixed-integer linear programming. The master problem tracked and minimized the overall operation cost of the entire model. To ensure a feasible and efficient solution, the formulation of the wind-battery-thermal unit commitment problem was designed to gather all system operating constraints. The solution to the optimization problem was procured on a personal computer using a general algebraic modeling system. To assess the performance of the proposed model, a simulation study based on the ten-unit power system test was applied. The effects of battery energy storage and wind power were deeply explored and investigated throughout various case studies.


2013 ◽  
Vol 347-350 ◽  
pp. 1455-1461 ◽  
Author(s):  
Rui Wang ◽  
Yu Guang Xie ◽  
Kai Xie ◽  
Ya Qiao Luo

This paper presents a methodology for solving unit commitment (UC) problem for thermal units integrated with wind power and generalized energy storage system (ESS).The ESS is introduced to achieve peak load shaving and reduce the operating cost. The volatility of wind power is simulated by multiple scenarios, which are generated by Latin hypercube sampling. Meanwhile, the scenario reduction technique based on probability metric is introduced to reduce the number of scenarios so that the computational burden can be alleviated. The thermal UC problem with volatile wind power and ESS is transformed to a deterministic optimization which is formulated as the mixed-integer convex program optimized by branch and bound-interior point method. During the branch and bound process, the best first search and depth first search are combined to expedite the computation. The effectiveness of the proposed algorithm is demonstrated by a ten unit UC problem.


Sign in / Sign up

Export Citation Format

Share Document