Differentiated local controls for distributed generators in active distribution networks considering cyber failures

Author(s):  
Wenxia Liu ◽  
Yu Lu ◽  
Mengyao Yang ◽  
Mengdi Fu ◽  
Lingfeng Wang
Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 295 ◽  
Author(s):  
Jinli Zhao ◽  
Mingkun Yao ◽  
Hao Yu ◽  
Guanyu Song ◽  
Haoran Ji ◽  
...  

With the increasing penetration of distributed generators, various operational problems, especially severe voltage violation, threaten the secure operation of active distribution networks. To effectively cope with the voltage fluctuations, novel controllable power electronic equipment represented by soft open points has been used in active distribution networks. Meanwhile, the communication has dramatically increased due to the rise of the variety and number of devices within the network. This paper proposes a decentralized voltage control method of soft open points based on voltage-to-power sensitivity. The method reduces the burden of communication, storage, and calculation effectively in a decentralized manner and fulfills the rapid requirements of large-scale active distribution networks. First, the network is divided into several sub-areas; each is under the control of one soft open point at most. The initial strategies of soft open points are adjusted by local voltage-to-power sensitivity and the voltage information within the sub-areas. If some nodal voltages still exceed the expected range after the sub-area autonomy, the operation strategies of soft open points are further improved by inter-area coordination with the alternating direction method of multipliers algorithm. The effectiveness of the proposed decentralized control method is verified on the IEEE 33-node system.


2019 ◽  
Vol 9 (23) ◽  
pp. 5021 ◽  
Author(s):  
Sun ◽  
Dong ◽  
Wang ◽  
Lv ◽  
War

Active distribution networks (ADNs) are a typical cyber–physical system (CPS), which consist of two kinds of interdependent sub-networks: power networks (PNs) and communication networks (CNs). The combination of typical characteristics of the ADN includes (1) a large number of distributed generators contained in the PN, (2) load redistribution in both the PN and CN, and (3) strong interdependence between the PN and CN, which makes ADNs vulnerable to cross-domain cascading failures (CCFs). In this paper, we focus on the robustness analysis of the ADN against the CCF. Rather than via the rate of the clusters with size greater than a predefined threshold, we evaluate the robustness of the ADN using the rate of the clusters containing generators after the CCF. Firstly, a synchronous probabilistic model is derived to calculate the proportions of remaining normal operational nodes after the CCF. With this model, the propagation of the CCF in the ADN can be described as recursive equations. Secondly, we analyze the relationship between the proportions of remaining normal operational nodes after the CCF and the distribution of distributed generators, unintentional random initial failure rate, the interdependence between the sub-networks, network topology, and tolerance parameters. Some results are revealed which include (1) the more distributed generators the PN contains, the higher ADN robustness is, (2) the robustness of the ADN is negatively correlated with the unintentional random initial failure rate, (3) the robustness of the ADN can be improved by increasing the average control fan in of each node in the PN and the average power fan in of each node in the CN, (4) the robustness of the ADN with Erdos–Renyi (ER) network topological structure is greater than that with Barabasi–Albert (BA) network topological structure under the same average node degree, and (5) the robustness of the ADN is greater, when the tolerance parameters increase. Lastly, some simulation experiments are conducted and experimental results also demonstrate that the conclusions above are effective to improve the robustness of the ADN against the CCF.


Sign in / Sign up

Export Citation Format

Share Document