Fatigue behaviour assessment of ductile cast iron smooth specimens

Author(s):  
Sabrina Vantadori ◽  
Camilla Ronchei ◽  
Daniela Scorza ◽  
Andrea Zanichelli ◽  
Andrea Carpinteri
2006 ◽  
Vol 20 (25n27) ◽  
pp. 4571-4576
Author(s):  
TERUTOSHI YAKUSHIJI ◽  
W. GEORGE FERGUSON ◽  
MASAHIRO GOTO

In order to study the mechanism of decreasing tensile strength and elongation of Austempered Ductile Cast Iron (ADI) in the wet condition, various tension tests and impact tests were carried out. Three point bending fatigue tests were carried out on ADI and annealed 0.55% carbon steel to clarify the influence of water on fatigue strength. The main conclusions are as follow. Embrittlement by water begins when plastic deformation starts in a tension test. The fatigue limit of ADI in water showed a lower value than that in air. The influence of a water environment on fatigue behaviour was similar to that of annealed 0.55% carbon steel. Embrittlement such as that in a tension test was not observed in a fatigue test.


2018 ◽  
Vol 165 ◽  
pp. 19006
Author(s):  
Elena Garcia Trelles ◽  
Christoph Schweizer ◽  
Stefan Eckmann

In this investigation, the fatigue behaviour of a ductile cast iron with high content of silicon and molybdenum, was experimentally characterized by performing isothermal low cycle fatigue (LCF) tests as well as out-of-phase thermomechanical fatigue (OPTMF) tests within the temperature range RT – 500 °C. The studied material shows an embrittlement at temperatures nearby 400 °C. A possible explanation for the observed lifetime reduction is intergranular embrittlement (IE). A mechanism based lifetime model is proposed for assessing the lifetime. The model is based on the assumption that the crack advance per cycle is correlated with the cyclic crack tip opening displacement (ΔCTOD) attributed to the crack tip blunting caused by accumulation of plastic and creep deformations ahead of the crack tip. Intergranular embrittlement is accounted for by introducing a temperature and strain rate dependent prefactor in the crack growth law, which only acts in a certain temperature range. The model is calibrated for a GJS material and successfully applied to predict the lifetime of this material when undergoing isothermal and non-isothermal mechanical loadings. A probabilistic interpretation of the scatter of the investigated material is presented in conjunction with the random nature of the initial defect size distribution.


2017 ◽  
Vol 59 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Birgit Rehmer ◽  
Birgit Skrotzki ◽  
Steffen Glaubitz

Sign in / Sign up

Export Citation Format

Share Document