Magnetic field effect on the unsteady free convection flow in a square cavity filled with a porous medium with a constant heat generation

2011 ◽  
Vol 54 (9-10) ◽  
pp. 1734-1742 ◽  
Author(s):  
C. Revnic ◽  
T. Grosan ◽  
I. Pop ◽  
D.B. Ingham
2014 ◽  
Vol 11 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Bala Siddulu Malga ◽  
Naikoti Kishan

The unsteady two-dimensional magnetohydrodynamic heat and mass transfer free convection flow of an incompressible viscous electrically conducting polar fluid through a porous medium past a semi-infinite vertical porous moving plate in the presence of a transverse magnetic field with thermal diffusion and heat generation is considered. The plate moves with a constant velocity in the longitudinal direction and the free stream velocity follows an exponentially increasing or decreasing. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the polar fluid with a suction velocity varying with time. The equations of conservation of mass, momentum, energy and concentration which govern the case study of heat and mass transfer flow have been obtained. The equations have been solved numerically by Galerkin finite element method. The effect of various flow parameters are presented graphically. Representative results for velocity profiles, temperature profiles and concentration profiles are obtained for several values of pertinent parameters which are of physical and engineering interest.DOI: http://dx.doi.org/10.3329/jname.v11i1.12844


2019 ◽  
Vol 29 (12) ◽  
pp. 4642-4659 ◽  
Author(s):  
Mikhail Sheremet ◽  
Teodor Grosan ◽  
Ioan Pop

Purpose This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism. Design/methodology/approach The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing and anticipated improved stability of the nanofluid. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. Findings It has been found that the Hartmann number suppresses the heat and mass transfer, while the cavity and magnetic field inclination angles characterize a non-monotonic behavior of the all considered parameters. A rise of the Hartmann number leads to a reduction of the influence rate of the magnetic field inclination angle. Originality/value The present results are original and new for the study of MHD-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms.


2013 ◽  
Vol 465-466 ◽  
pp. 149-154
Author(s):  
Marneni Narahari ◽  
Sowmya Tippa ◽  
Rajashekhar Pendyala

Theoretical analysis of unsteady magnetohydrodynamic free convection flow of a viscous incompressible radiative fluid past an infinite vertical plate with constant heat and mass flux is presented. The dimensionless governing linear partial differential equations have been solved using the Laplace transform technique. The exact solutions for the velocity, temperature and concentration fields are derived. The effects of radiation, magnetic field and buoyancy ratio parameters on the velocity and temperature fields are discussed through graphs. It is found that the velocity increases with increasing radiation parameter whereas it decreases with increasing magnetic field parameter for buoyancy assisted flows.


Sign in / Sign up

Export Citation Format

Share Document