hartmann number
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 111)

H-INDEX

26
(FIVE YEARS 8)

2022 ◽  
Vol 27 ◽  
pp. 1-23
Author(s):  
Rujda Parveen ◽  
Tapas Ray Mahapatra

This paper examines the two-dimensional laminar steady magnetohydrodynamic doublediffusive mixed convection in a curved enclosure filled with different types of nanofluids. The enclosure is differentially heated and concentrated, and the heat and mass source are embedded in a part of the left wall having temperature Th (>Tc) and concentration ch (>cc). The right vertical wall is allowed to move with constant velocity in a vertically upward direction to cause a shear-driven flow. The governing equations along with the boundary conditions are transformed into a nondimensional form and are written in stream function-velocity formulation, which is then solved numerically using the Bi-CGStab method. Based on the numerical results, the effects of the dominant parameters such as Richardson number (1 ≤ Ri ≤ 50), Hartmann number (0 ≤ Ha ≤ 60), solid volume fraction of nanoparticles (0.0 ≤ ϕ ≤ 0.02), location and length of the heat and mass source are examined. Results indicate that the augmentation of Richardson number, heat and mass source length and location cause heat and mass transfer to increase, while it decreases when Hartmann number and volume fraction of the nanoparticles increase. The total entropy generation rises by 1.32 times with the growing Richardson number, decreases by 1.21 times and 1.02 times with the rise in Hartmann number and nanoparticles volume fraction, respectively.


Author(s):  
Nilankush Acharya

This study investigates the Al2O3-water nanofluidic transport within an isosceles triangular compartment with top vertex downwards. The top wall is maintained isothermally cooled and left as well as right inclined walls are made uniformly heated. Two diamond-shaped obstacles are positioned inside the enclosure. The nanofluidic motion is supposed to be magnetically influenced. This investigation includes a fine analysis of how various thermal modes of obstacles affect the velocity and thermal profiles of the nanofluid. Appropriate similarity conversion leads to having a non-dimensional flow profile and is treated with Galerkin finite element scheme. The grid independency, experimental verification, and comparison assessments are directed to explore the model accuracy. The dynamic parameters like Rayleigh number [Formula: see text], nanoparticle volume fraction [Formula: see text], and Hartmann number [Formula: see text] are varied to perceive the noteworthy changes in isotherms, velocity, streamlines, and Nusselt number. The consequences specify average Nusselt number deteriorates for Hartmann number but escalates for nanoparticle concentration and Rayleigh number. Both heated and adiabatic obstacles exhibit high heat transport, while cold obstacles reveal the lowest magnitude in heat transmission. For Rayleigh number, cold obstacles reveal 34.51% heat transport enhancement, whereas it is 52.72% for heated obstacles compared to cold one. mathematics subject classification: 76W05


2021 ◽  
pp. 4953-4963
Author(s):  
Alaa Hammodat ◽  
Ghanim Algwauish ◽  
Iman Al-Obaidi

This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system by creating a computer program using MATLAB.                                                                               


2021 ◽  
Vol 5 (2) ◽  
pp. 1-13
Author(s):  
Dr Sumera Dero ◽  
Ghulam Hyder Talpur ◽  
Abbas Ali Ghoto ◽  
Shokat Ali

In this study, the MHD effect on boundary layer rotating flow of a nanofluid is investigated for the multiple branches case. The main focus of current research is to examine flow characteristics on a nonlinear permeable shrinking sheet. Moreover, the governing partial differential equations (PDEs) of the problem considered are reduced into coupled nonlinear ordinary differential equations (ODEs) with the appropriate similarity transformation.  Numerical results based on the plotted graphs are gotten by solving ODEs with help of the three-stage Labatto IIIA method in bvp4c solver in MATLAB. To confirm numerical outcomes, current results are compared with previously available outcomes and found in good agreement. Skin friction coefficients, Nusselt and Sherwood numbers, velocity profiles, temperature profiles, and concentration profiles are examined. The results show that dual (no) branches exist in certain ranges of the suction parameter i.e., SSc (SSc). Further, profiles of velocity decrease for rising values of Hartmann number in the upper branch, while reverse trend has been noticed in a lower branch. Profiles of temperature and concentration enhance for the increasing values of thermophoresis in both branches. stability analysis of the branches is also done and noticed that upper branch is a stable branch from both branches. Finally, it is noted that the stable branch has symmetrical behavior with regard to the parameter of rotation.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Basant K. Jha ◽  
Dauda Gambo

AbstractThis research work inspects mass transport phenomenon of Saffman’s dusty fluid model for transient magnetohydrodynamics fluid flow of a binary mixture passing through an annular duct. Particularly, effort has been devoted to theoretically explore the role of velocity of applied magnetic field. Here, our treatment of the governing momentum equations accountable for the flow is done using the classical Laplace transform technique and Riemann-Sum Approximation. The effects of the physical parameters such as time, relaxation time parameter, radii ratio, Hartmann number, variable mass parameter and velocity of applied magnetic field on the fluid phase velocity, dust phase velocity and skin friction have been illustrated pictorially. It is concluded that contrary to the known classical effect of boosting Hartmann number on velocity, both components of flow (fluid and dust phase) and skin friction are seen to be heightened with an overwhelming presence of velocity of applied magnetic field. For large time, it is anticipated that higher profiles for velocity and skin friction are seen with fluid phase and an accelerated moving wall.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1554
Author(s):  
Muhammad Shoaib ◽  
Muhammad Asif Zahoor Raja ◽  
Muhammad Touseef Sabir ◽  
Kottakkaran Sooppy Nisar ◽  
Wasim Jamshed ◽  
...  

The objective of this study is to explore the flow features and heat transfer properties of an MHD hybrid nanofluid between two parallel plates under the effects of joule heating and heat absorption/generation (MHD-HFRHT) by utilizing the computational strength of Levenberg–Marquardt Supervised Neural Networks (LM-SNNs). Similarity equations are utilized to reduce the governing PDEs into non-linear ODEs. A reference solution in the form of data sets for MHD-HFRHT flow is obtained by creating different scenarios by varying involved governing parameters such as the Hartman number, rotation parameter, Reynolds number, velocity slip parameter, thermal slip parameter and Prandtl number. These reference data sets for all scenarios are placed for training, validation and testing through LM-SNNs and the obtained results are then compared with reference output to validate the accuracy of the proposed solution methodology. AI-based computational strength with the applicability of LM-SNNs provides an accurate and reliable source for the analysis of the presented fluid-flow system, which has been tested and incorporated for the first time. The stability, performance and convergence of the proposed solution methodology are validated through the numerical and graphical results presented, based on mean square error, error histogram, regression plots and an error-correlation measurement. MSE values of up to the accuracy level of 1 × 10−11 established the worth and reliability of the computational technique. Due to an increase in the Hartmann number, a resistance was observed, resulting in a reduction in the velocity profile. This occurs as the Hartmann number measures the relative implication of drag force that derives from magnetic induction of the velocity of the fluid flow system. However, the Reynolds number accelerates in the velocity profile due to the dominating impact of inertial force.


2021 ◽  
Vol 6 (7) ◽  
pp. 114-117
Author(s):  
B. Odongo ◽  
R. Opiyo ◽  
A. Manyonge

Effects of inclination and free convection on velocity profile for magnetohydrodynamic (MHD) fluid flow in an inclined cylindrical pipe has been investigated. The governing partial differential equations are the equations of continuity, momentum and energy which are converted into ordinary differential equation by employing similarity transformation and solved numerically by the Runge- Kutta fourth order scheme with shooting method. The findings, which are presented in the form of tables and graphs reveal that; when Hartmann number, Grashoff number and Gamma are decreased, the velocity of the fluid increases. The results of the study may be useful for the different model investigations, especially, in various areas of science and technology in which optimal inclination and free convection are utilized.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 438
Author(s):  
Toshio Tagawa ◽  
Kewei Song

Spin-up from rest of a liquid metal having deformable free surface in the presence of a uniform axial magnetic field is numerically studied. Both liquid and gas phases in a vertically mounted cylinder are assumed to be an incompressible, immiscible, Newtonian fluid. Since the viscous dissipation and the Joule heating are neglected, thermal convection due to buoyancy and thermocapillary effects is not taken into account. The effects of Ekman number and Hartmann number were computed with fixing the Froude number of 1.5, the density ratio of 800, and the viscosity ratio of 50. The evolutions of the free surface, three-component velocity field, and electric current density are portrayed using the level-set method and HSMAC method. When a uniform axial magnetic field is imposed, the azimuthal momentum is transferred from the rotating bottom wall to the core region directly through the Hartmann layer. This is the most striking difference from spin-up of the nonmagnetic case.


2021 ◽  
Vol 10 (4) ◽  
pp. 564-579
Author(s):  
Rujda Parveen ◽  
Priyajit Mondal ◽  
Tapas Ray Mahapatra

This research presents an investigation of laminar two-dimensional double-diffusive free convection and entropy formation in an inclined enclosure under the influence of an inclined magnetic field. The performance of natural convective heat transfer can be improved by doing modifications in enclosure geometry that impact the flow structure. We have considered a dome-shaped enclosure to examine the heat and mass transfer performance. The enclosure is saturated with Cu-water nanofluid and the two sidewalls of the enclosure are maintained at constant temperature Tc(<Th) and concentration cc(<ch). The top-curved wall is adiabatic, and the lower wall is discretely heated and concentrated. The governing equations are first non-dimensionalized and then written in stream function-velocity formulation that is solved numerically using the Bi-CGStab method. A comparison with previously published work in literature is presented and found to be in excellent agreement. Numerical simulations are performed for various values of considered parameters such as Rayleigh number (Ra), Hartmann number (Ha), the orientation of magnetic field (γ), volume fraction of nanoparticles (Φ), and inclination angle of the enclosure (δ). The mentioned parameters have a substantial impact on the cavity flow characteristics. The obtained results demonstrate that the average Sherwood number and Nusselt number are decreasing functions of both the Hartmann number and inclination angle of the enclosure. The minimum heat and mass transfer took place at δ = 135° as the angle of inclination of the enclosure restrains the fluid velocity and reduces the heat transfer rate. Also, entropy generation analysis is conducted for all the considered parameters. The results show that the dome-shaped enclosure has a substantial impact on the fluid flow that enables a smoother and more effective flow inside the cavity, which improves the natural convective heat and mass transmission.


2021 ◽  
Vol 26 (4) ◽  
pp. 128-144
Author(s):  
T. Linga Raju

Abstract An electro-magnetohydrodynamic (EMHD) two fluid flow and heat transfer of ionized gases through a horizontal channel surrounded by non-conducting plates in a rotating framework with Hall currents is investigated. The Hall effect is considered with an assumption that the gases are completely ionized and the strength of the applied transverse magnetic field is strong. The governing equations are solved analytically for the temperature and velocity distributions in two fluid flow regions. The numerical solutions are demonstrated graphically for various physical parameters such the Hartmann number, Hall parameter, rotation parameter, and so on. It was noticed that an increment is either due to the Hall parameter or the rotation parameter reduces the temperature in the two regions.


Sign in / Sign up

Export Citation Format

Share Document