Effects of flow field on the wall mass transfer rate behind a circular orifice in a round pipe

Author(s):  
Feng Shan ◽  
Atsushi Fujishiro ◽  
Tatsuya Tsuneyoshi ◽  
Yoshiyuki Tsuji
2021 ◽  
Vol 927 ◽  
Author(s):  
F. Shan ◽  
S.Y. Qin ◽  
Y. Xiao ◽  
A. Watanabe ◽  
M. Kano ◽  
...  

This paper first uses a low-speed stereoscopic particle image velocimetry (SPIV) system to measure the convergent statistical quantities of the flow field and then simultaneously measure the time-resolved flow field and the wall mass transfer rate by a high-speed SPIV system and an electrochemical system, respectively. We measure the flow field and wall mass transfer rate under upstream pipe Reynolds numbers between 25 000 and 55 000 at three specific locations behind the orifice plate. Moreover, we apply proper orthogonal decomposition (POD), stochastic estimation and spectral analysis to study the properties of the flow field and the wall mass transfer rate. More importantly, we investigate the large-scale coherent structures’ effects on the wall mass transfer rate. The collapse of the wall mass transfer rates’ spectra by the corresponding time scales at the three specific positions of orifice flow suggest that the physics of low-frequency wall mass transfer rates are probably the same, although the flow fields away from the wall are quite different. Furthermore, the spectra of the velocity reconstructed by the most energetic eigenmodes agree well with the wall mass transfer rate in the low-frequency region, suggesting that the first several energetic eigenmodes capture the flow dynamics relevant to the low-frequency variation of the wall mass transfer. Stochastic estimation results of the velocity field associated with large wall mass transfer rate at all three specific locations further reveal that the most energetic coherent structures are correlated with the wall mass transfer rate.


2005 ◽  
Vol 73 (1) ◽  
pp. 108-111 ◽  
Author(s):  
A. A. Rashaida ◽  
D. J. Bergstrom ◽  
R. J. Sumner

In the present investigation, an analytical numerical solution is presented for the mass transfer from a rotating disk to a Bingham fluid for the case of laminar boundary layer flow. The analytical approach includes the coupled effects of steady disk rotation and non-Newtonian fluid properties on the mass transfer rate. A dimensionless expression for the wall mass transfer rate based on the Sherwood number, Sh, is obtained in terms of the system parameters (Reynolds number, Rep, and Schmidt number, Scp) which depend on the dimensionless yield stress or Bingham number, By. The analytical relation indicates that an increase in By (up to the limit By⩽1) leads to a slight increase in the wall mass transfer rate, and thereafter, for By>1, the mass transfer rate is reduced.


2013 ◽  
Vol 2013 (0) ◽  
pp. _G0502-01_-_G0502-02_
Author(s):  
Yuki KATAI ◽  
Tatsuya TSUNEYOSHI ◽  
Taro IKAI ◽  
Teppei TANAKA ◽  
Yoshiyuki TSUJI

2003 ◽  
Vol 68 (11) ◽  
pp. 2080-2092 ◽  
Author(s):  
Martin Keppert ◽  
Josef Krýsa ◽  
Anthony A. Wragg

The limiting diffusion current technique was used for investigation of free convective mass transfer at down-pointing up-facing isosceles triangular surfaces of varying length and inclination. As the mass transfer process, copper deposition from acidified copper(II) sulfate solution was used. It was found that the mass transfer rate increases with inclination from the vertical to the horizontal position and decreases with length of inclined surface. Correlation equations for 7 angles from 0 to 90° were found. The exponent in the ShL-RaL correlation ranged from 0.247 for the vertical case, indicating laminar flow, to 0.32 for inclinations of 60 to 90°, indicating mixed or turbulent flow. The general correlation ShL = 0.358(RaL sin θ)0.30 for the RaL sin θ range from 7 × 106 to 2 × 1011 and inclination range from 15 to 90° was obtained.


2000 ◽  
Vol 55 (7) ◽  
pp. 1257-1267 ◽  
Author(s):  
Tiruta-Barna Ligia ◽  
Barna Radu ◽  
Moszkowicz Pierre ◽  
Bae Hae-Ryong

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 109978-109982 ◽  
Author(s):  
Young-Kee Kim ◽  
Sung-Yeob Lee ◽  
Byung-Keun Oh

In an enzyme process using a gas substrate, the enhanced gas liquid mass transfer rate of the gas substrate by methyl-functionalized mesoporous nanoparticles could improve the productivity.


Sign in / Sign up

Export Citation Format

Share Document