bingham fluid
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 75)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
H. Balachandra ◽  
Choudhari Rajashekhar ◽  
Hanumesh Vaidya ◽  
Fateh Mebarek Oudina ◽  
Gudekote Manjunatha ◽  
...  

The exploration addresses the effect of variable viscosity and thermal conductivity on the peristaltic mechanism of Bingham fluid. A two-dimensional non-uniform porous channel is considered for the fluid flow, which is assumed to be inclined. The impact of heat, slip conditions, wall properties, homogeneous and heterogeneous reactions are examined. The resulting nonlinear differential equations are solved by employing the perturbation method. The solutions acquired are analyzed and sketched through graphs that show that the variable viscosity renders a critical role in regulating the velocity of the fluid in the channel's central part. The stream function has been analyzed to observe the trapping phenomenon. Further, the obtained results find its application in understanding the flow of blood in micro arteries.


Author(s):  
Siti Nurulaifa Mohd ZainulAbidin ◽  
Zuhaila Ismail ◽  
Nurul Aini Jaafar

An artery narrowing referred to as atherosclerosis or stenosis causes a reduction in the diameter of the artery. When blood flow through an artery consists of stenosis, the issue of solute dispersion is more challenging to solve. A mathematical model is developed to examine the unsteady solute dispersion in an overlapping stenosed artery portraying blood as Bingham fluid model. The governing of the momentum equation and the constitutive equation is solved analytically. The generalized dispersion model is imposed to solve the convective-diffusion equation and to describe the entire dispersion process. The dispersion function at steady-state decreases at the center of an artery as the stenosis height increase. A reverse behavior is shown at an unsteady-state. As the plug core radius, time and stenosis height increase, the dispersion function decreases at the center of an artery. There is a high amount of red blood cells at the center of the artery but no influences near the wall. Hence, this model is useful in transporting the drug or nutrients to the targeted stenosed region in the treatment of diseases and in understanding many physiological processes.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Safaa Mohammed ◽  
Dheia G. Salih Al-Khafajy

In this paper aims, we found the fluid concentration after calculating the velocity and temperature of the fluid with a variable viscosity that depends on the fluid moving through an inclined porous channel. We examined the influences of certain parameters that are active on fluid velocity by analyzing the graphs obtained after we reached the momentum equation solution, and used the MATHEMATICA program for plot the velocity and temperature of the fluid for two types of flow (Poiseuille and Couette).


Sign in / Sign up

Export Citation Format

Share Document