A mathematical model for frost growth and densification on flat surfaces

Author(s):  
Amne El Cheikh ◽  
Anthony Jacobi
Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2009 ◽  
Vol 33 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Christian J.L. Hermes ◽  
Robson O. Piucco ◽  
Jader R. Barbosa ◽  
Cláudio Melo
Keyword(s):  

Author(s):  
M. G. Galkin ◽  
A. S. Smagin ◽  
A. S. Poupyreva

In the process of multivariate design of machining technology, one of the important tasks is to select the optimal cutting conditions at the final transitions of the forming process, providing a given quality of the surfaces on the workpiece made of the appropriate material. At the same time, to describe most of the design procedures of the machining process, there are problems associated with the algorithm for choosing the solution method, the response function and the range of acceptable solutions at all stages of processing. In this paper, as an algorithm for solving the problem, we propose the use of the known method of extreme planning of the experiment, which allows to obtain a mathematical model of the investigated multifactorial process with incomplete knowledge of its optimization mechanism. In the process of implementation of this algorithm in real production conditions on the basis of a priori information, the research area was chosen and the main levels of factors and intervals of their variation in this area were established. Then a full factorial experiment was carried out and its results were processed on the basis of a linear polynomial taking into account linear effects and interaction effects. As a result of testing the polynomial confidence intervals were determined for all regression coefficients by four parallel experiments at the same values of factors. In the second phase, were evaluated the adequacy of most mathematical models of the Fisher test. In the end, the transition from the coded values of the factors in the mathematical model to their natural values was carried out. Using the final model with natural values of the factors, a numerical experiment was conducted, which determined the optimum region with the most unfavorable treatment mode. Such a study allows to simplify the procedure for assigning the processing mode of the workpiece at the final stage in the conditions of the current production, while ensuring the specified quality of the machined surfaces and maintaining the productivity of the forming process. This technique is the subject of consideration in this work.


Author(s):  
Oleg V. Zakharov ◽  
K. G. Pugin ◽  
L. V. Seliverstova

Sign in / Sign up

Export Citation Format

Share Document