technological system
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 131)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Svetlana Lisienko

Increasing the efficiency of tapping the aquatic biological resources by fishing vessels directly depends on the improvement of production and technological activities in the unpredictable field conditions. Like any production process, the production and technological activity of fishing vessels is associated with the occurrence of costs at all stages (phases) of the production process, the aggregate and structure of which depends on the fishing technological system of the fishing vessel. The stages of the production process form the main material flow, ensuring its end-to-end promotion. Its efficiency significantly affects the costs and management of field resources and should be achieved by minimizing material losses, primarily in the process of extracting raw materials. For this, it is necessary to study the field conditions in which the production and technological process takes place within the framework of the production vessel, determine their structure, variability, analyze the structure and composition of production costs at all phases of the production and technological process, develop a situational and scenario approach to the formation of production and technological activities of fishing vessels on a fishing trip. The costs arising in all subsystems (phases) and operating on a constant basis throughout the entire fishing period are proposed to be divided into several types of costs. Their interrelated and interdependent influence can give both a general determinism to the production process and increase its imbalance, increasing the total fishing costs of a producing vessel due to the emergence of additional costs associated with an unstable fishing situation in the fishing area. In this regard, the production activity on the fishing vessel is carried out according to the formed fishing and technological scenarios. The developed block diagram of the totality of fishing costs during the movement of the main material flow through the phases of the fishing and technological system of a fishing vessel gives a complete picture of the total fishing costs of a fishing vessel when it simultaneously performs the processes of extraction and processing of aquatic biological resources with a situational-scenario approach to their formation.


2021 ◽  
Vol 23 (4) ◽  
pp. 6-20
Author(s):  
Nizami Yusubov ◽  
◽  
Heyran Abbasova ◽  

Introduction. One of the main reasons that modern multi-purpose CNC machines do not use the capabilities of multi-tool processing is the lack of recommendations for design in this direction and, accordingly, for adjustment schemes. The study of the possibilities of multi-tool processing on multi-purpose machines is the subject of the work. The purpose of research: The problem of developing full-factor matrix models of dimensional accuracy and its sensitivity to the machining process is considered to increase the machining efficiency while ensuring machining accuracy using the technological capabilities of multi-tool machining on modern multi-purpose CNC machines. For this purpose, full-factor matrix models of the size scattering fields performed on multi-tool double-carriage adjustments have been developed, taking into account the cases of processing parts with dimensions that differ sharply in different directions, which are often encountered in practice, and in this case, the significant influence of the turns of the workpiece on the processing error, especially in directions with sharply different overall dimensions. Results of research: The developed accuracy models make it possible to calculate not only plane-parallel displacements of the technological system for double-carriage adjustments, but also angular displacements around base points, take into account the combined effect of many factors – a complex characteristic of the subsystems of the technological system (plane-parallel matrix of compliance and angular matrix of compliance), the geometry of the cutting tool , the amount of bluntness of the tool, cutting conditions, etc. As a result, based on the developed accuracy models, it is possible to obtain several ways to control multi-tool machining, including improving the structure of multi-tool adjustments, calculating the limiting values of cutting conditions. Based on the developed full-factor matrix models, it became possible to develop recommendations for the design of adjustments and the creation of an automated design system for multi-tool machining for a group of modern multi-purpose CNC lathes. Scope of the results: The results obtained can be used to create mathematical support for the design of operations in CAD-systems provided for multi-tool multi-carriage machining performed on multi-purpose machines. Conclusions: The developed models and methodology for simulating the machining accuracy make it possible to increase the accuracy and efficiency of simultaneous machining, to predict the machining accuracy within the specified conditions.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022026
Author(s):  
G Prokopets ◽  
A Mordovtsev

Abstract Vibro-impact processing refers to finishing processing methods, which largely determine the operational part properties. It is shown that the parameter optimization of the vibro-impact processing is a very promising area of improving the part quality and reducing their manufacturing cost.One of the most important technological system elements is the process fluid. As a result of the priory information analysis, factors that determine the parameters of the vibro-impact processing were identified.Because of theoretical studies, the process fluid parameters and flushing mode influence degree on the process parameters and treated part quality indicators was determined. The process fluid is presented as a set of unit volumes that form an elastically deformable matrix. The necessary list of initial data for determining the maximum allowable process fluid amount in the mass load volume has been identified.The dependence for determining the minimum required process fluid volume is presented. A complex parameter that characterizes the change in the load mass volume in one oscillations cycle, together with the working chamber oscillation frequency and the process fluid fluidity, which determine both the fluid flow process nature (turbulent) and the flow rate inside the load mass is proposed. Based on the complex parameter, the load mass flushing speed is determined. It is shown that at this stage, the numerical value of the parameter can only be determined experimentally. Its theoretical definition is a promising area of further research.


2021 ◽  
pp. 28-37
Author(s):  
Leonid Shyrin ◽  
Rostislav Yehorchenko ◽  
Мykola Sergienko

The purpose of the paper is to analyze a deformation mechanism of the mine degassing pipelines to forecast their spatial changes in terms of intensification of underground mining of coal-gas seams. Methodology. The paper deals with expert assessment of the available approaches to diagnostics of technical condition of mine degassing pipelines, which are constructed within the in-seam underground mine workings with the floor rocks prone to heaving. The results of scheduled surveying measurements of technical condition of in-seam development workings have helped identify the potentially hazardous zones of rock mass deformation and indices of changes in spatial location of section degassing pipelines mounted in those mine workings. To determine the operating modes of a degassing pipeline under such operating conditions, a computer model of interaction of the elements of transport-technological system “mine gas pipeline – mine working” has been developed Findings. Diagnostics of technical conditions of the mine gas transmission lines and examination of their dismantled components have helped understand that deflections, mainly resulting in water accumulation zones, intensive corrosion of internal pipe walls, and mechanical depositions of coal and rock dust take place right within the flange connection areas. Formation of such zones is argued by health of the degassing pipeline as well as mine air inflow. Availability of internal corrosion, water accumulations, and mine air inflow decreases substantially capacity of the underground gas transmission line inclusive of qualitative characteristics of the captured methane-air mixture and efficiency of MDS on the whole. Originality. New approaches to diagnostics of technical condition of mine degassing gas pipeline in difficult mining and geological conditions of development of gas-bearing coal seams are substantiated and it is offered to consider indicators of their functioning as interacting in space and time transport-technological system "mine gas pipeline - mining". Practical implications. The operational parameters of mine degassing systems notes that the equipment performance with the least underpressure losses created by vacuum pipes requires that the degassing pipeline should have minimum hydraulic resistance of the gas transmission network. Pipeline aeration from the mine workings and water accumulations should be prevented by means of qualitative hermetic sealing of its flange connections as well as the pipeline straightness with the corresponding pitches. Consequently, the basic requirements for operating mine degassing pipelines involve their design profile, tightness of flange connections of pipes as well as operative control of the facility health.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7887
Author(s):  
Antonio Costanzo ◽  
Sergio Falcone ◽  
Antonino D’Alessandro ◽  
Giovanni Vitale ◽  
Sonia Giovinazzi ◽  
...  

A technological system capable of automatically producing damage scenarios at an urban scale, as soon as an earthquake occurs, can help the decision-makers in planning the first post-disaster response, i.e., to prioritize the field activities for checking damage, making a building safe, and supporting rescue and recovery. This system can be even more useful when it works on densely populated areas, as well as on historic urban centers. In the paper, we propose a processing chain on a GIS platform to generate post-earthquake damage scenarios, which are based: (1) on the near real-time processing of the ground motion, that is recorded in different sites by MEMS accelerometric sensor network in order to take into account the local effects, and (2) the current structural characteristics of the built heritage, that can be managed through an information system from the local public administration authority. In the framework of the EU-funded H2020-ARCH project, the components of the system have been developed for the historic area of Camerino (Italy). Currently, some experimental fragility curves in the scientific literature, which are based on the damage observations after Italian earthquakes, are implemented in the platform. These curves allow relating the acceleration peaks obtained by the recordings of the ground motion with the probability to reach a certain damage level, depending on the structural typology. An operational test of the system was performed with reference to an ML3.3 earthquake that occurred 13 km south of Camerino. Acceleration peaks between 1.3 and 4.5 cm/s2 were recorded by the network, and probabilities lower than 35% for negligible damage (and then about 10% for moderate damage) were calculated for the historical buildings given this low-energy earthquake.


2021 ◽  
pp. 96-105
Author(s):  
M. Potapenko ◽  
◽  
V. Ramsh ◽  
V. Sharshon ◽  
◽  
...  

A promising alternative energy source is biogas, which is obtained by bacteria processing an organic substrate without access to oxygen. The efficiency of the use and functioning of technological systems is determined by the indicators of their operability and reliability. The aim of the study is to develop a methodology for assessing the performance of technological systems for biogas production by complex indicators. The article analyzes the methods of complex assessment of the state of technological systems. The considered methods have the following disadvantages: most of them can be used only after a certain operating time of the system; expert assessments are based on intuition and, as a result, are not always objective; the functional-parametric approach is methodological rather than practical; determination of the efficiency retention coefficient with an increase in the number of elements and the complication of the structure of the technological system becomes rather difficult. The operability of technological systems for biogas production with an increase in their service life is expressed through a change in technical condition indicators, a decrease in productivity and a change in economic indicators: an increase in costs per unit of work performed and additional costs for maintaining a repair and maintenance base. To analyze the technical state of technological systems for biogas production, it is advisable to use a complex operational indicator , which simultaneously takes into account its technical and economic characteristics during the period of operation, that is, the unit costs of ensuring operability through the cost of a unit of production during the service life up to the limiting state. Key words: technological system, biogas, reliability, operability, efficiency preservation ratio, comprehensive performance indicator


2021 ◽  
Vol 2091 (1) ◽  
pp. 012057
Author(s):  
A A Shabanov ◽  
E E Averchenkova

Abstract New term “Assembly Production Organizational and Technological System” is proposed. The model of Assembly Production Organizational and Technological System developed by the authors is described. In the model, this system is considered as a set of subsystems included in it: Assembly Tools Subsystem, Calibration Equipment Subsystem, Spare Tools and Parts Subsystem. Control system of the Assembly Production Organizational and Technological System is described. Developed by the authors model of Assembly Tools Set Element, which is a part of the Assembly Tools Subsystem is described. Developed by the authors classification of elements of assembly tools set is provided. The authors divide the assembly tools set into the following groups of equipment: torque wrenches, non-programmable screwdrivers and nutrunners, multispeed programmable screwdrivers and nutrunners, tooling and adaptors. Assembly tools for tightening threaded joints are divided into 3 groups according to the level of automation of the tightening process. These groups are divided into subgroups according to the principles developed by the authors. Developed classification of elements of assembly tools set is expedient to be used in automotive cluster assembly factories and other factories which have a similar assembly tools set structure.


2021 ◽  
Vol 215 ◽  
pp. 104228
Author(s):  
Melissa Pineda-Pinto ◽  
Pablo Herreros-Cantis ◽  
Timon McPhearson ◽  
Niki Frantzeskaki ◽  
Jing Wang ◽  
...  

2021 ◽  
Vol 2021 (10) ◽  
pp. 4-12
Author(s):  
Damir Safarov ◽  
Aleksey Kondrashov ◽  
Ayrat Fashudtinov

The paper considers a technique that allows to increase the efficiency of solving various types of production tasks based on simulation modeling. The technique considers the process of engineering modeling of technological system components in accordance with conceptual hierarchical levels, which with the deeper level provide an approximation of the simulated object from the initial correspondence in the form of equipment contours to the maximum in the form of a 3D component model based on 3D scanning. This technique allows to choose the most adequate option of modeling the technological system components, corresponding to the complexity of the production task solved by simulation modeling. The application of the technique in the design and engineering services of a machine-building enterprise allows to arrange the modeling process, select all its stages, assign performers, check the execution of the modeling process, ensure that the models correspond to the production task being solved. The technique effectiveness is confirmed by the given examples of solving production tasks of diverse complexity – simulation modeling of gear milling of helical bevel gears and circular tooth pulling. The purpose of the paper is to reduce the complexity of building 3D models of technological systems by engineering services of machine-building enterprises for solving production problems of diverse complexity thanks to the hierarchical structuring of input design information for building 3D models of a technological system and solved production tasks. Research methods: functional differentiation of processes. Research results and novelty: reducing the duration of solving production tasks of diverse complexity by decreasing the time of 3D modeling of technological systems. Conclusions: rational arrangement of engineering modeling based on the hierarchical structuring of input design information for building 3D models of a technological system and solved production tasks allows to reduce the duration of engineering modeling up to two times.


2021 ◽  
Vol 80 ◽  
pp. 102242
Author(s):  
Chelsea Schelly ◽  
Valoree Gagnon ◽  
Kristin Arola ◽  
Andrew Fiss ◽  
Marie Schaefer ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document