Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks

Author(s):  
G.D. Xia ◽  
J. Jiang ◽  
J. Wang ◽  
Y.L. Zhai ◽  
D.D. Ma
Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Xiao Cheng ◽  
Huiying Wu

Abstract Pillar microchannel heat sinks have been widely used for chip cooling, while their overall heat transfer performance is restricted by the stagnation flow in pillar wake zone. In this work, a simple but effective method using slit microstructure modified on pillar was proposed to enhance wake zone heat transfer. It enables a special flow path for the incoming fluid that intensively disturbs the wake fluid. To validate the proposed method, a three-dimensional simulation was employed to study the laminar flow and heat transfer characteristics in the slit pillar microchannel. The pillar without slit design was also investigated for comparative analysis. Effects of slit angle (θ), height over diameter ratio (H/D), and blocking ratio (D/W) of a single pillar were systematically studied at the Reynolds numbers of 26–260. Results showed the case with θ = 0 deg always demonstrated lower surface temperature, higher Nusselt number and higher thermal performance index (TPI) compared to other cases with different slit angles at the same conditions. Furthermore, it was interesting to find that the slit configuration was not suitable for long pillar microchannel, but preferred for high blocking ratio pillar microchannel at present ranges (H/D ≤ 1, D/W ≤ 0.5). The slit pillar array microchannel was also explored and observed with improved overall heat transfer performance. The proposed slit microstructure well prevents the heat transfer deterioration in pillar wake zone, which is promisingly to be used for cooling performance improvement of electronic device.


2002 ◽  
Vol 124 (3) ◽  
pp. 164-169 ◽  
Author(s):  
H. B. Ma ◽  
G. P. Peterson

An extensive numerical analysis of the temperature distribution and fluid flow in a heat sink currently being used for cooling desktop computers was conducted, and demonstrated that if the base of a heat sink was fabricated as a heat pipe instead of a solid material, the heat transfer performance could be significantly increased. It was shown that as the heat sink length increases, the effect of the thermal conductivity of the base on the heat transfer performance increases to be a predictable limit. As the thermal conductivity is increased, the heat transfer performance of heat sinks is enhanced, but cannot exceed this limit. When the thermal conductivity increases to 2,370 W/m-K, the heat transfer performance of the heat sinks will be very close to the heat transfer performance obtained assuming a base with infinite thermal conductivity. Further increases in the thermal conductivity would not significantly improve the heat transfer performance of the heat sinks.


Sign in / Sign up

Export Citation Format

Share Document