Heat transfer in the hydraulic jump region of circular free-surface liquid jets

Author(s):  
Hossein Askarizadeh ◽  
Hossein Ahmadikia ◽  
Claas Ehrenpreis ◽  
Reinhold Kneer ◽  
Ahmadreza Pishevar ◽  
...  
1992 ◽  
Vol 114 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Y. Pan ◽  
J. Stevens ◽  
B. W. Webb

This is the second of a two-part study on the flow structure and heat transfer characteristics of turbulent, free-surface liquid jets. Part 2 deals with the effect of selected nozzle configurations on the local heat transfer in the stagnation zone. Infrared techniques have been used to characterize the local heat transfer for the four nozzle configurations whose mean and turbulent flow structure was detailed in Part 1. The results show that for identical jet Reynolds numbers, significant differences exist in the magnitudes of the local Nusselt number for the nozzle types studied. Differences of approximately 40 percent were observed. Local heat transfer results reveal that for already turbulent jets, the mean radial velocity gradient appears to be more influential in determining the heat transfer than incremental changes in the level of turbulence (as measured by the radial component of the fluctuations). An empirical correlation of the experimental data supports this conclusion, and reveals that the stagnation Nusselt number is affected independently by the jet Reynolds number and the dimensionless mean radial velocity gradient.


1995 ◽  
Vol 117 (4) ◽  
pp. 878-883 ◽  
Author(s):  
Y. Pan ◽  
B. W. Webb

In this study, local heat transfer data under arrays of free-surface liquid jets are measured with a two-dimensional infrared radiometer. Experimental measurements were made for three nozzle diameters using a seven-jet staggered and a nine-jet inline geometric array configuration. Nozzle-to-plate spacings of two and five nozzle diameters were investigated for four jet center-to-center spacings ranging from two to eight diameters in the jet Reynolds number range of 5000 to 20,000. Results show that the stagnation Nusselt number under the central jet is independent of array configuration and jet-to-jet spacing. The different inter jet flow interaction, as represented by different jet array configurations (the in-line array and the staggered array with different nozzle-to-nozzle spacings), shows negligible influence on local heat transfer under the central jet. Differences in the heat transfer characteristics for the two nozzle-to-plate spacings investigated were the result of an observed transition from confined submerged central jet flow to free-surface jet flow as the nozzle-to-plate spacing was increased. Secondary maxima in the Nusselt number were observed between the adjacent jets, being a direct consequence of the radial flow interaction between jets. A correlation for average heat transfer is presented.


2002 ◽  
Vol 45 (2) ◽  
pp. 307-314 ◽  
Author(s):  
Yaohua ZHAO ◽  
Takashi MASUOKA ◽  
Takaharu TSURUTA ◽  
Chong-Fang MA

Author(s):  
Albert Y. Tong

The problem of convective heat transfer of a circular liquid jet impinging onto a substrate is studied numerically. The objective of the study is to understand the hydrodynamics and heat transfer of the impingement process. The Navier-Stokes equations are solved using a finite-volume formulation. The free surface of the jet is tracked by the volume-of-fluid method. The energy equation is modeled by using an enthalpy-based formulation. Detailed flow fields as well as free surface contours and pressure distributions on the substrate have been obtained. Local Nusselt number variations along the solid surface have also been calculated. The effects of several key parameters on the hydrodynamics and heat transfer of an impinging liquid jet have been examined. It has been found that the jet-inlet velocity profile and jet elevation have a significant effect on the hydrodynamics and heat transfer, particularly in the stagnation region, of an impinging jet. The numerical results have been compared with experimental data obtained from the literature. The close agreement supports the validity of the numerical study.


Sign in / Sign up

Export Citation Format

Share Document