scholarly journals Leidenfrost temperature: Surface thermal diffusivity and effusivity effect

Author(s):  
Rui Wu ◽  
Omar Lamini ◽  
C.Y. Zhao
2021 ◽  
Vol 2119 (1) ◽  
pp. 012079
Author(s):  
I P Starodubtseva ◽  
A N Pavlenko

Abstract The results of computational experiments simulating the triggering of the quench front propagation on the superheated vertically oriented metal plates are presented. The plates are quenched by a gravitationally flowing down liquid nitrogen film. The temperature of the test samples at the beginning of the process was higher than the critical temperature and the Leidenfrost temperature, which means that direct long-term liquid-solid contact is impossible. For this reason, the front is initially motionless. As a result of numerical simulation, a dynamic pattern of the quench front propagation on a high-temperature surface was obtained. Analysis of the results allowed to find the realistic values of heat sink into the cooling medium, as well as the parameters of the local temperature disturbance, its spatial extent and amplitude, at which the conditions are created for triggering the process of quench front propagation on the high-temperature surface. Direct comparison of the numerical simulations results with experimental data on the velocity, geometry of the quench front and on the dynamical pattern of the process confirmed the reliability of the results obtained.


1991 ◽  
Vol 3 (1) ◽  
pp. 69-80
Author(s):  
S. B. Peralta ◽  
S. C. Ellis ◽  
C. Christofides ◽  
A. Mandeiis ◽  
H. Sang ◽  
...  

1983 ◽  
Vol 44 (C6) ◽  
pp. C6-463-C6-467 ◽  
Author(s):  
B. Merté ◽  
P. Korpiun ◽  
E. Lüscher ◽  
R. Tilgner

2020 ◽  
pp. 29-34
Author(s):  
Alexandr V. Kostanovskiy ◽  
Margarita E. Kostanovskaya

Work is devoted to studying of a linear mode thermodynamic – a mode which is actively investigated now. One of the main concepts of a linear mode – local entropy rate of production. The purpose of given article consists in expansion of a circle of problems for which it is possible to calculate a local entropy rate of production, namely its definition, using the experimental “time-temperature” curves of heating/cooling. “Time-temperature” curves heating or cooling are widely used in non-stationary thermophysical experiments at studying properties of substances and materials: phase transitions of the first and second sort, a thermal capacity, thermal diffusivity. The quantitative substantiation of the formula for calculation of the local entropy rate of production in which it is used thermogram (change of temperature from time) which is received by a method of pulse electric heating is resulted. Initial time dependences of electric capacity and temperature are measured on the sample of niobium in a microsecond range simultaneously. Conformity of two dependences of the local entropy rate of production from time is shown: one is calculated under the known formula in which the brought electric capacity is used; another is calculated, using the thermogram.


2009 ◽  
Vol 129 (1) ◽  
pp. 30-34
Author(s):  
Mrityunjai Kumar Singh ◽  
Lei Xu ◽  
Akihisa Ogino ◽  
Masaaki Nagatsu

1993 ◽  
Vol 8 (1) ◽  
pp. 38-43 ◽  
Author(s):  
J.M. Dubois ◽  
S.S. Kang ◽  
P. Archambault ◽  
B. Colleret
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document