Hydrothermal waves in sessile droplets evaporating at a constant contact angle mode

Author(s):  
Ji-Long Zhu ◽  
Wan-Yuan Shi
Author(s):  
Mercy Dicuangco ◽  
Susmita Dash ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

The ability to control the size, shape, and location of particulate deposits is important in patterning, nanowire growth, sorting biological samples, and many other industrial and scientific applications. It is therefore of interest to understand the fundamentals of particle deposition via droplet evaporation. In the present study, we experimentally probe the assembly of particles on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex particles. Superhydrophobic surfaces are known to result in a significant decrease in the solid-liquid contact area of a droplet placed on such a substrate, thereby increasing the droplet contact angle and reducing the contact angle hysteresis. We conduct experiments on superhydrophobic surfaces of different geometric parameters that are maintained at different surface temperatures. The transient droplet shape and wetting behavior during evaporation are analyzed as a function of substrate temperature as well as surface morphology. During the evaporation process, the droplet exhibits a constant contact radius mode, a constant contact angle mode, or a mixed mode in which the contact angle and contact radius change simultaneously. The evaporation time of a droplet can be significantly reduced with substrate heating as compared to room-temperature evaporation. To describe the spatial distribution of the particle residues left on the surfaces, qualitative and quantitative evaluations of the deposits are presented. The results show that droplet evaporation on superhydrophobic surfaces, driven by mass diffusion under isothermal conditions or by substrate heating, suppresses particle deposition at the contact line. This preempts the so-called coffee-ring and allows active control of the location of particle deposition.


2015 ◽  
Vol 27 (5) ◽  
pp. 052101 ◽  
Author(s):  
F. H. H. Al Mukahal ◽  
B. R. Duffy ◽  
S. K. Wilson

2008 ◽  
Vol 157 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Rodrigo Ristow Montes ◽  
Jose A. Verderesi

Langmuir ◽  
2002 ◽  
Vol 18 (7) ◽  
pp. 2636-2641 ◽  
Author(s):  
H. Yildirim Erbil ◽  
G. McHale ◽  
M. I. Newton

2018 ◽  
Vol 58 (1) ◽  
pp. 121 ◽  
Author(s):  
Saurabh Naik ◽  
Gabriel Malgaresi ◽  
Zhenjiang You ◽  
Pavel Bedrikovetsky

Water blocking is a frequent cause for gas productivity decline in unconventional and conventional fields. It is a result of the capillary end effect near the wellbore vicinity. It creates significant formation damage and decreases gas well productivity. The alteration of the rock wettability by nanofluids is an effective way to reduce water blockage and enhance gas production. Presently, several types of surfactants and nanofluids are used in the industry for contact angle alteration. In this study, we developed an analytical model and analysed the sensitivity to several parameters. After the treatment, the porous medium in the well vicinity (or along the core) will have a stepwise constant contact angle profile. We derive analytical models for compressible steady-state two-phase linear and axi-symmetric flows, accounting for the piecewise-constant contact angle and contact-angle-dependent capillary pressure and relative permeability. The modelling reveals a complex interplay between the competing effects of compressibility, viscous and capillary forces, which influence the optimal contact angle for treatment. The optimal contact angle for treatment will depend on the initial wettability of the formation, the water cut and the capillary-viscous ratio.


Sign in / Sign up

Export Citation Format

Share Document