wettability alteration
Recently Published Documents


TOTAL DOCUMENTS

870
(FIVE YEARS 381)

H-INDEX

51
(FIVE YEARS 15)

2022 ◽  
Vol 114 ◽  
pp. 103556
Author(s):  
A.M. Kassa ◽  
S.E. Gasda ◽  
D. Landa-Marbán ◽  
T.H. Sandve ◽  
K. Kumar

Author(s):  
Ammar Al-Bayati ◽  
Chamini I. Karunarathne ◽  
Abdulrahman S. Al Jehani ◽  
Ahmed Z. Al-Yaseri ◽  
Alireza Keshavarz ◽  
...  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 411
Author(s):  
Aleksei O. Malahov ◽  
Emil R. Saifullin ◽  
Mikhail A. Varfolomeev ◽  
Sergey A. Nazarychev ◽  
Aidar Z. Mustafin ◽  
...  

The selection of effective surfactants potentially can mobilize oil up to 50% of residuals in mature carbonate oilfields. Surfactants’ screening for such oilfields usually is complicated by the high salinity of water, high lipophilicity of the rock surface, and the heterogeneous structure. A consideration of features of the oilfield properties, as well as separate production zones, can increase the deep insight of surfactants’ influence and increase the effectiveness of surfactant flooding. This article is devoted to the screening of surfactants for two production zones (Bashkirian and Vereian) of the Ivinskoe carbonate oilfield with high water salinity and heterogeneity. The standard core study of both production zones revealed no significant differences in permeability and porosity. On the other hand, an X-ray study of core samples showed differences in their structure and the presence of microporosity in the Bashkirian stage. The effectiveness of four different types of surfactants and surfactant blends were evaluated for both production zones by two different oil displacement mechanisms: spontaneous imbibition and filtration experiments. Results showed the higher effect of surfactants on wettability alteration and imbibition mechanisms for the Bashkirian cores with microporosity and a higher oil displacement factor in the flooding experiments for the Vereian homogeneous cores with lower oil viscosity.


Author(s):  
Tesleem Lawal ◽  
Mingyuan Wang ◽  
Gayan A. Abeykoon ◽  
Francisco J. Argüelles-Vivas ◽  
Ryosuke Okuno

Author(s):  
Nabeel Kadhim Abbood ◽  
Abdolrahman obeidavi ◽  
Seyednooroldin Hosseini

AbstractIn the current study, the effect of CuO nanoparticles (CuO-NPs) at the presence of dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) is investigated on the interfacial tension (IFT) reduction, wettability alteration, and even tertiary oil recovery. Since the prepared solutions with CuO-NPs are completely dark and it is impossible to measure the IFT of these solutions in the presence of crude oil using the pendant drop method (since one of the phases must be transparent for IFT measurement using the pendant drop method), n-heptane (representative of saturates) and toluene (representative of aromatics) are used only for IFT measurement of solutions prepared by CuO-NPs, while rest of the experiments are performed using crude oil. The obtained results reveal that CuO-NPs are not stable in the aqueous solution in the absence of surfactant which means fast precipitation of CuO-NPs and a high risk of pore plugging. In this way, the stability of CuO-NPs is investigated at the presence of dodecyl-3-methyl imidazolium chloride ([C12mim][Cl]) as an effective surfactant for stabilizing the CuO-NPs in the aqueous solution (more than 1 month without precipitation using 1000 ppm of IL). Further measurements reveal that although the presence of IL in the aqueous solution can reduce the IFT of oil/aqueous solution system, especially for the aqueous solutions prepared by formation brine (0.65 mN.m−1), the presence of CuO-NPs has no considerable effect on the IFT. On the other hand, not only the contact angle (CA) measurements reveal the considerable effect of IL on the wettability alteration toward water-wet condition (68.3° for IL concentration of 1000 ppm) but also the addition of CuO-NPs can significantly boost the wettability alteration toward strongly water-wet condition (23.4° for the concentration of 1000 ppm of CuO-NPs). Finally, several core flooding experiments are performed using different combinations of chemicals to find the effect of these chemicals on the tertiary oil recovery factor. The results reveal that the presence of CuO-NPs can enhance the oil recovery of injected chemical slug (aqueous solution prepared by dissolution of IL with an oil recovery factor of 10.1% based on Original oil in place (OOIP)) to 13.8, %, 16.9%, and 21.2% based on OOIP if 500, 1000, 2000 ppm of CuO-NPs existed in the solution concomitant with 1000 ppm of [C12mim][Cl].


SPE Journal ◽  
2022 ◽  
pp. 1-13
Author(s):  
Song Qing ◽  
Hong Chen ◽  
Li-juan Han ◽  
Zhongbin Ye ◽  
Yihao Liao ◽  
...  

Summary α-Zirconium phosphate (α-ZrP) nanocrystals were synthesized by refluxing method and subsequently exfoliated into extremely thin 2D nanosheets by tetrabutylammonium hydroxide (TBAOH) solution. Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the size distribution and morphology of α-ZrP nanosheets. Interfacial tension (IFT) and contact angle measurement were conducted by different concentrations of α-ZrP nanosheets solutions. The results displayed that the wettability of porous media surface was altered from oleophilic to hydrophilic and the IFT decreased with the increasing of α-ZrP nanosheets concentrations. A new method was proposed to calculate the Hamaker constant for 2D α-ZrP nanosheets. The calculated results displayed that α-ZrP nanosheets were not easy to agglomerate under experimental environment and when the interaction energy barrier increased, the transport amount of α-ZrP nanosheets also increased. Coreflooding tests were also performed with various concentrations and the oil recovery efficiency increased from 33.59 to 51.26% when α-ZrP nanosheets concentrations increased from 50 to 1,000 ppm.


2022 ◽  
Vol 345 ◽  
pp. 118128
Author(s):  
Jaber Taheri-Shakib ◽  
Mahyar Rajabi-Kochi ◽  
Akram Shabani ◽  
Ali Esfandiarian ◽  
Mohammad Afkhami Karaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document