Power conversion efficiency enhancement of various size CdS quantum dots and dye co-sensitized solar cells

2013 ◽  
Vol 38 (36) ◽  
pp. 16733-16739 ◽  
Author(s):  
Baoyuan Wang ◽  
Hao Ding ◽  
Yunxia Hu ◽  
Hai Zhou ◽  
Shuqiang Wang ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2155-2158 ◽  
Author(s):  
Luting Ling ◽  
Qiang Zhang ◽  
Lin Zhu ◽  
Cai-Feng Wang ◽  
Su Chen

A new interfacial synthesis of colloidal SnSe quantum dots (QDs) was realized from common precursors at a mild condition. SnSe QD-sensitized solar cells were fabricated to show an improved power conversion efficiency with a high fill factor of 0.71.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 460
Author(s):  
Qiming Yang ◽  
Wen Yang ◽  
Yong Zhang ◽  
Wen Ge ◽  
Xin Yang ◽  
...  

Dye-sensitized solar cells are regarded as promising candidates to resolve the energy and environmental issues in recent years, arising from their solution-processable fabrication technology and high power conversion efficiency. However, there are still several problems regarding how to accelerate the development of this type of photovoltaics, including the limited light-harvesting ability and high-production cost of molecular dye. In the current work, we have systematically studied the role of nitrogen-doped carbon quantum dots (N-CQDs) as co-sensitizers in traditional dye sensitized solar cells. A series of N-CQDs have been prepared by employing chitosan as a precursor via one-pot hydrothermal technology for various times, demonstrating a maximized efficiency as high as 0.089% for an only N-CQDs-based device. Moreover, the co-sensitized solar cell based on N719 dye (C58H86N8O8RuS2) and optimized N-CQDs shows significantly enhanced performance, yielding a solar-to-electric conversion efficiency of up to 9.15% under one standard sun (AM 1.5G) irradiation, which is much higher than the 8.5%-efficiency of the controlled device without N-CQDs. The matched characteristics of energy level, excellent up-convention, and FRET (Förster resonance energy transfer) abilities of N-CQDs are responsible for their improved power conversion efficiency.


2021 ◽  
Vol 11 (3) ◽  
pp. 674-678
Author(s):  
Shibing Zou ◽  
Lingting Song ◽  
Junhong Duan ◽  
Le Huang ◽  
Weiqing Liu ◽  
...  

2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


Sign in / Sign up

Export Citation Format

Share Document