Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height

2017 ◽  
Vol 42 (29) ◽  
pp. 18252-18262 ◽  
Author(s):  
Xu Zhang ◽  
Gege Wang ◽  
Mengjie Zhang ◽  
Hailong Liu ◽  
Wei Li
2021 ◽  
Vol 2 (4) ◽  
pp. 293-305
Author(s):  
Mohammad Mahdi Mahzoon ◽  
Masoud Kharati-Koopaee

In this research, the effect of Gurney flap and trailing-edge wedge on the aerodynamic behavior of blunt trailing-edge airfoil Du97-W-300 which is equipped with vortex generator is studied. To do this, the role of Gurney flap and trailing-edge wedge on the lift and drag coefficient and also aerodynamic performance of the airfoil is studied. Validation of the numerical model is performed by comparison of the obtained results with those of experiment. Results show that before stall, Gurney flap leads to the increase in the aerodynamic performance in a wider range of angle of attack. Numerical findings reveal that the maximum increment for the aerodynamic performance is obtained at low angle of attack when trailing-edge wedge is employed. It is found that for the highest considered value of Gurney flap and trailing-edge wedge heights, where the highest values for the lift occur, the higher aerodynamic performance at low angle of attack is obtained when trailing-edge wedge is used and at high angle of attack, the Gurney flap results in a higher aerodynamic performance. It is also shown that when high aerodynamic performance is concerned, addition of Gurney flap to the airfoil leads to the higher value for the lift. Doi: 10.28991/HIJ-2021-02-04-03 Full Text: PDF


Author(s):  
Aubryn Cooperman ◽  
Anthony McLennan ◽  
Jonathon Baker ◽  
C van Dam ◽  
Raymond Chow

2016 ◽  
Vol 25 (4) ◽  
pp. 342-348 ◽  
Author(s):  
Chao Li ◽  
Peigang Yan ◽  
Xiangfeng Wang ◽  
Wanjin Han ◽  
Qingchao Wang

Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Chao Yin ◽  
Wei Yan

This paper presents numerical optimization of a compressor rotor, to deepen the knowledge of endwall flow in the large-scale axial subsonic compressor, accordingly reduce its endwall loss and improve its aerodynamic performance. With numerical simulation and numerical optimization tools, three-dimensional stacking principle is optimized to improve the design operation point performance for the rotor. Results show that, hub region of the rotor cannot undertake large blade loading; compared to the prototype rotor, obvious aerodynamic performance improvements locate near the hub area, and a certain degree of positive dihedral in this region effectively helps to reduce its flow loss. The effect of “loaded leading edge and unloaded trailing edge” due to positive dihedral was shown, which suppresses flow separation near the trailing edge, consequently obviously reduces the flow loss and largely improves the rotor aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document