scholarly journals The Effect of Gurney Flap and Trailing-edge Wedge on the Aerodynamic Behavior of an Axial Turbine Blade

2021 ◽  
Vol 2 (4) ◽  
pp. 293-305
Author(s):  
Mohammad Mahdi Mahzoon ◽  
Masoud Kharati-Koopaee

In this research, the effect of Gurney flap and trailing-edge wedge on the aerodynamic behavior of blunt trailing-edge airfoil Du97-W-300 which is equipped with vortex generator is studied. To do this, the role of Gurney flap and trailing-edge wedge on the lift and drag coefficient and also aerodynamic performance of the airfoil is studied. Validation of the numerical model is performed by comparison of the obtained results with those of experiment. Results show that before stall, Gurney flap leads to the increase in the aerodynamic performance in a wider range of angle of attack. Numerical findings reveal that the maximum increment for the aerodynamic performance is obtained at low angle of attack when trailing-edge wedge is employed. It is found that for the highest considered value of Gurney flap and trailing-edge wedge heights, where the highest values for the lift occur, the higher aerodynamic performance at low angle of attack is obtained when trailing-edge wedge is used and at high angle of attack, the Gurney flap results in a higher aerodynamic performance. It is also shown that when high aerodynamic performance is concerned, addition of Gurney flap to the airfoil leads to the higher value for the lift. Doi: 10.28991/HIJ-2021-02-04-03 Full Text: PDF

2021 ◽  
Vol 11 (18) ◽  
pp. 8395 ◽  
Author(s):  
Pan Xiong ◽  
Lin Wu ◽  
Xinyuan Chen ◽  
Yingguang Wu ◽  
Wenjun Yang

In order to ensure the blade strength of large-scale wind turbine, the blunt trailing edge airfoil structure is proposed, aiming at assessing the impact of the trailing edge shape on the flow characteristics and airfoil performance. In this paper, a Joukowsky airfoil is modified by adding the tail thickness parameter K to achieve the purpose of accurately modifying the thickness of the blunt tail edge of the airfoil. Using Ansys Fluent as a tool, a large eddy simulation (LES) model was used to analyze the vortex structure of the airfoil trailing edge. The attack angles were used as variables to analyze the aerodynamic performance of airfoils with different K-values. It was found that when α = 0°, α = 4°, and α = 8°, the lift coefficient and lift–drag ratio increased with increasing K-value. With the increase in the angle of attack from 8° to 12°, the lift–drag ratio of the airfoil with the blunt tail increased from +70% to −7.3% compared with the original airfoil, which shows that the airfoil with the blunt trailing edge has a better aerodynamic performance at a small angle of attack. The aerodynamic characteristics of the airfoil are affected by the periodic shedding of the wake vortex and also have periodic characteristics. By analyzing the vortex structure at the trailing edge, it was found that the value of K can affect the size of the vortex and the position of vortex generation/shedding. When α = 0°, α = 4°, and α = 8°, the blunt trailing edge could improve the aerodynamic performance of the airfoil; when α = 12°, the position of vortex generation changed, which reduced the aerodynamic performance of the airfoil. Therefore, when designing the trailing edge of an airfoil, the thickness of the trailing edge can be designed according to the specific working conditions. It can provide valuable information for the design and optimization of blunt trailing edge airfoil.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Sammy Diasinos ◽  
Tracie J. Barber ◽  
Graham Doig

A numerical-based (Reynolds-averaged Navier–Stokes (RANS)) investigation into the role of span and wing angle in determining the performance of an inverted wing in ground effect located forward of a wheel is described, using a generic simplified wheel and NACA 4412 geometry. The complex interactions between the wing and wheel flow structures are investigated to explain either increases or decreases for the downforce and drag produced by the wing and wheel when compared to the equivalent body in isolation. Geometries that allowed the strongest primary wing vortex to pass along the inner face of the wheel resulted in the most significant reductions in lift and drag for the wheel. As a result, the wing span and angle combination that would produce the most downforce, or least drag, in the presence of the wheel does not coincide with what would be assumed if the two bodies were considered only in isolation demonstrating the significance of optimizing these two bodies in unison.


AVIA ◽  
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Y Parlindungan ◽  
S Tobing

This study is inspired by the flapping motion of natural flyers: insects. Many insects have two pairs of wings referred as tandem wings. Literature review indicates that the effects of tandem wing are influenced by parameters such as stagger (the stream-wise distance between the aerodynamic center of the front and the rear airfoil), angle-of-attack and flow velocity. As a first stage, this study focuses on the effects of stagger (St) on the aerodynamic performance of tandem wings. A recent numerical study of stagger on tandem airfoils in turbulent flow (Re = 6000000) concluded that a larger stagger resulted in a decrease in lift force, and an increase in drag force. However, for laminar flow (Re = 2000), increasing the stagger was not found to be detrimental for aerodynamic performance. Another work also revealed that the maximum lift coefficient for a tandem configuration decreased with increasing stagger. The focus of this study is to perform an experimental analysis of tandem two-dimensional (2D) NACA 0012 airfoils. The two airfoils are set at the same angle-of-attack of 0° to 15° with 5° interval and three variations of stagger: 1c, 1.5c and 2c. The experiments are conducted using an open-loop-subsonic wind tunnel at a Reynolds number of 170000. The effects of St on the aerodynamic forces (lift and drag) are analyzed


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
M. Rafiuddin Ahmed ◽  
Epeli Nabolaniwaqa

The flow characteristics and the lift and drag behavior of a thick trailing-edged airfoil that was provided with fixed trailing-edge flaps (Gurney flaps) of 1–5% height right at the back of the airfoil were studied both experimentally and numerically at different low Reynolds numbers (Re) and angles of attack for possible applications in wind turbines suitable for the wind speeds of 4–6 m/s. The flap considerably improves the suction on the upper surface of the airfoil resulting in a higher lift coefficient. The drag coefficient also increased; however, the increase was less compared with the increase in the lift coefficient, resulting in a higher lift-to-drag ratio in the angles of attack of interest. The results show that trailing-edge flaps can improve the performance of blades designed for low wind speeds and can be directly applied to small wind turbines that are increasingly being used in remote places or in smaller countries.


Author(s):  
Hadi Sutanto ◽  
Chin-Tu Lu ◽  
Hodik Chaiyadi

The vertical-axis wind turbine has an advantage over the horizontal-axis wind turbine because of its structural simplicity due to the independence of motion in wind direction. This article describes a new idea on how to develop the Darrieus vertical-axis wind turbine by modifying the angle of attack and adding airfoils on the wind turbine. The wind turbine has a symmetrical airfoil of NACA 0012 with three-double blade configurations to optimize the performance of the vertical shaft wind turbine. A computational fluid dynamics technique was used to understand the impact of variations of wind velocity on the angle of attack and additional distance of airfoil in turbulence intensity based on the contour of wind velocity passing the wind turbine. Using this method, the authors showed that the results of the study in turn with the variation of wind velocity, different angle of attack and additional distance of airfoil have an effect on the values of lift and drag coefficient. The highest value of the coefficient of lift is 4.1, followed by the coefficient of drag which is 0.79 at 0.3 m with the angle of attack at -4o, the wind velocity is 9.428 m/s and the result of the highest torque is 0.57 Nm which has a coefficient of performance of 1.3%.


2021 ◽  
Vol 11 (22) ◽  
pp. 10764
Author(s):  
Hyeon-Gi Moon ◽  
Sunho Park ◽  
Kwangtae Ha ◽  
Jae-Ho Jeong

Thick airfoils are conventionally adopted in the blade root region of a wind turbine to ensure structural safety under extreme conditions, despite the resulting power loss. To prevent this loss, a passive flow control device known as a vortex generator (VG) is installed at the starting point of the stall to control the flow field near the wall of the suction surface. In this study, we used computational fluid dynamics (CFD) to investigate the aerodynamic characteristics induced as a result of the shape and layout of the VG on a multi-MW wind turbine blade. The separated and vortical flow behavior on the suction surface of the wind turbine blade equipped with VGs was captured by the Reynolds-averaged Navier–Stokes (RANS) steady-flow simulation. The parametric sensitivity study of the VG shape parameters such as the chord-wise length, height, and interval of the fair of VGs was conducted using thick DU airfoil on the blade inboard area. Based on these results, the response surface method (RSM) was used to investigate the influence of the design parameters of the VG. Based on the CFD results, the VG design parameters were selected by considering the lift coefficient and vorticity above the trailing edge. The maximum vorticity from the trailing edge of the selected VG and the lift coefficient were 55.7% and 0.42% higher, respectively, than the average. The selected VG design and layout were adopted for a multi-MW wind turbine and reduced stall occurrence in the blade root area, as predicted by the simulation results. The VG improved the aerodynamic performance of the multi-MW wind turbine by 2.8% at the rated wind speed.


Sign in / Sign up

Export Citation Format

Share Document