scholarly journals Efficient utilization of waste heat from molten carbonate fuel cell in parabolic trough power plant for electricity and hydrogen coproduction

Author(s):  
Coulibaly Souleymane ◽  
Jun Zhao ◽  
Wenjia Li
Energy ◽  
2016 ◽  
Vol 117 ◽  
pp. 578-589 ◽  
Author(s):  
Liqiang Duan ◽  
Kun Xia ◽  
Tao Feng ◽  
Shilun Jia ◽  
Jing Bian

2005 ◽  
Vol 3 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Petar Varbanov ◽  
Jiří Klemeš ◽  
Ramesh K. Shah ◽  
Harmanjeet Shihn

A new view is presented on the concept of the combined cycle for power generation. Traditionally, the term “combined cycle” is associated with using a gas turbine in combination with steam turbines to better utilize the exergy potential of the burnt fuel. This concept can be broadened, however, to the utilization of any power-generating facility in combination with steam turbines, as long as this facility also provides a high-temperature waste heat. Such facilities are high temperature fuel cells. Fuel cells are especially advantageous for combined cycle applications since they feature a remarkably high efficiency—reaching an order of 45–50% and even close to 60%, compared to 30–35% for most gas turbines. The literature sources on combining fuel cells with gas and steam turbines clearly illustrate the potential to achieve high power and co-generation efficiencies. In the presented work, the extension to the concept of combined cycle is considered on the example of a molten carbonate fuel cell (MCFC) working under stationary conditions. An overview of the process for the MCFC is given, followed by the options for heat integration utilizing the waste heat for steam generation. The complete fuel cell combined cycle (FCCC) system is then analyzed to estimate the potential power cost levels that could be achieved. The results demonstrate that a properly designed FCCC system is capable of reaching significantly higher efficiency compared to the standalone fuel cell system. An important observation is that FCCC systems may result in economically competitive power production units, comparable with contemporary fossil power stations.


Sign in / Sign up

Export Citation Format

Share Document