2004 ◽  
Vol 2 (2) ◽  
pp. 94-98 ◽  
Author(s):  
Huisheng Zhang ◽  
Shilie Weng ◽  
Ming Su

The intention of this paper is to present the dynamic models for the molten carbonate fuel cell (MCFC)-gas turbine hybrid cycle. This paper analyzes the performance of various components in the hybrid power plant, such as the compressor, turbine, recuperator, generator, fuel cell stack, etc. The modular simulation models of these components are presented. Based on the dynamic simulation modeling principle, one bottoming hybrid MCFC-microturbine cycle was studied to carry out the simulation. The simulation result can reflect the dynamic response of the hybrid power plant.


Author(s):  
Jarosław Milewski ◽  
Jacek Sałacin´ski ◽  
Andrzej Miller

The possibility of using a Molten Carbonate Fuel Cell (MCFC) to reduce the CO2 emission from Gas Turbine Power Plant (GTPP) is shown. The MCFC is placed after a gas turbine. The main advantages of this solution are: higher total electric power generated by hybrid system and reduced CO2 emission with remained system efficiency. A comparison of three systems: standard GTPP, GT-MCFC, and GT-MCFC with additional heat exchangers is shown. The application of MCFC could reduce CO2 emission of 73% (absolutely) and 77% relative to produced power.


Author(s):  
Maria-Teresa Basurto ◽  
Pericles Pilidis ◽  
Richard Hales

Molten Carbonate Fuel Cell/Gas Turbine (MCFC/GT) hybrid power systems represent a modern, efficient and clean alternative to the currently used marine propulsion systems. The objective of this paper is to present the results found from the application of MCFC/GT hybrid power systems to marine propulsion, and in particular to present the results of the off-design performance of a COGAFC system (Combined Gas Turbine and Fuel Cell System). The results presented are subjected to the current uncertainties on MCFC power systems derived from its early stage of development. It is, then, the interest of the authors to summarise the results of the research work done, providing to the lectors the understanding and a general view of which are the concerns, the benefits, and which should be the next steps on the implementation of these systems. The study is summarised into two papers: “Molten Carbonate Fuel Cell Gas Turbine Combined Cycle for Marine Propulsion. Part A: Design Point Operation” (Basurto et al., 2002), that describes the selection of the design point, and “Molten Carbonate Fuel Cell Gas Turbine Combined Cycle for Marine Propulsion. Part B: Part Load Operation”, that describes the off-design performance of the system. The study is based on previous work published by the authors on the integration of MCFCs with gas turbines (Basurto et al., 2001).


1999 ◽  
Vol 121 (4) ◽  
pp. 277-285 ◽  
Author(s):  
R. J. Braun ◽  
R. A. Gaggioli ◽  
W. R. Dunbar

A proposed molten carbonate fuel cell power plant design, intended for commercial production by the end of the 1990s and developed under the auspices of the U.S. Department of Energy, the Gas Research Institute, and Energy Research Corporation, has been analyzed with exergy and pinch analysis. The commercial production units, targeted for dispersed power generation markets, are based on an existing demonstration molten carbonate fuel cell power plant design which was demonstrated from 1996–1997. Exergy analysis of the commercial plant design shows the overall, second-law system efficiency to be 53 percent. The principal inefficiency, 17 percent of the total, lies in the catalytic combustor. Another major inefficiency is the stack loss, 14 percent. Heat transfer accounts for approximately 6 percent of the loss. System reconfigurations, incorporating a steam cycle with reheat (System I) and a gas turbine cycle (System II), both with revised heat exchanger networks, for significant improvement are proposed and evaluated. The second-law system efficiency is raised to 66 percent in System I and to 70 percent for System II.


Author(s):  
Ji Ho Ahn ◽  
Tong Seop Kim

Owing to the increasing consumption of fossil fuels and emission of greenhouse gases, interests in highly efficient and low carbon emitting power systems are growing fast. Several research groups have been suggesting advanced systems based on fuel cells and have also been applying carbon capture and storage technology to satisfy the demand for clean energy. In this study, the performance of a hybrid system, which is a combination of a molten carbonate fuel cell (MCFC) with oxy-combustion carbon capture and an indirectly fired micro gas turbine (MGT) was predicted. A 2.5MW MCFC system that is used in commercial applications was used as the reference system so that the results of the study could be applicable to practical situations. The ambient pressure type hybrid system was modeled by referring to the design parameters of an MGT that is currently being developed. A semi-closed type design characterized by flow recirculation was adopted for this hybrid system. A part of the recirculating gas is converted into liquefied carbon dioxide and captured for storage at the carbon separation unit. Almost 100% carbon dioxide capture is possible with this system. In these systems, the output power of the fuel cell is larger than in the normal hybrid system without carbon capture because the partial pressure of carbon dioxide increases. The increased cell power partially compensates for the power loss due to the carbon capture and MGT power reduction. The dependence of net system efficiency of the oxy-hybrid on compressor pressure ratio is marginal, especially beyond an optimal value.


Sign in / Sign up

Export Citation Format

Share Document