An upper bound solution of axial metal flow in cold radial forging process of rods

2014 ◽  
Vol 85 ◽  
pp. 120-129 ◽  
Author(s):  
Yunjian Wu ◽  
Xianghuai Dong ◽  
Qiong Yu
Author(s):  
Hamed Afrasiab ◽  
M. R. Movahhedy

Radial forging is an open die forging process used for reducing the diameters of shafts, tubes, stepped shafts and axels, and for creating internal profiles in tubes. Among parameters affecting process variables, the die geometry is of fundamental importance and greatly influences variables such as forging load, stress distribution on the dies, metal flow during deformation, and surface finish of the forged product. In this paper a generalized slab method analysis of radial forging process is presented which can handle this process with curved shape dies. Results for dies with various curves are presented and it is shown that the analysis reduces to that of Lahoti and Altan [2] when the die has a linear profile.


2022 ◽  
Author(s):  
Saeed Darki ◽  
Evgeniy Yurevich Raskatov

Abstract In this study, considering all the parameters in radial forging and a three-dimensional model has been simulated using the finite element method. By implementing an elastoplastic state for the specimen tube, parameters such as friction type, residual stress distribution, effective strain distribution, material flow velocity and its effect on the neutral plate and the distribution of force in the die have been studied and analyzed. The effects of angle on the quality and characteristics of the specimen and the longevity of the die have also been obtained. Experimental results have been used to confirm the accuracy of the simulation. The results of the hardness test after forging were compared with the simulation results. Good agreement between the results indicates the accuracy of the simulation in terms of hardness. Therefore, this validation allows confirming the other obtained results for the analysis and prediction of various components in the forging process. After the validation and confirmation of the results through the hardness test, the hardness distribution was obtained by considering temperature changes and the effective strain on the specimen.


Sign in / Sign up

Export Citation Format

Share Document