radial forging
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Saeed Darki ◽  
Evgeniy Yurevich Raskatov

Abstract In this study, considering all the parameters in radial forging and a three-dimensional model has been simulated using the finite element method. By implementing an elastoplastic state for the specimen tube, parameters such as friction type, residual stress distribution, effective strain distribution, material flow velocity and its effect on the neutral plate and the distribution of force in the die have been studied and analyzed. The effects of angle on the quality and characteristics of the specimen and the longevity of the die have also been obtained. Experimental results have been used to confirm the accuracy of the simulation. The results of the hardness test after forging were compared with the simulation results. Good agreement between the results indicates the accuracy of the simulation in terms of hardness. Therefore, this validation allows confirming the other obtained results for the analysis and prediction of various components in the forging process. After the validation and confirmation of the results through the hardness test, the hardness distribution was obtained by considering temperature changes and the effective strain on the specimen.


2021 ◽  
Vol 83 ◽  
pp. 228-238
Author(s):  
Jingfeng Zou ◽  
Lifeng Ma ◽  
Weitao Jia ◽  
Qichi Le ◽  
Gaowu Qin ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1488
Author(s):  
Lev B. Zuev ◽  
Galina V. Shlyakhova ◽  
Svetlana A. Barannikova

Radial forging is a reliable way to produce Ti alloy rods without preliminary mechanical processing of their surface, which is in turn a mandatory procedure during almost each stage of the existing technology. In the present research, hot pressing and radial forging (RF) of the titanium-based Ti-3.3Al-5Mo-5V alloy were carried out to study the specifics of plasticized metal flow and microstructural evolution in different sections of the rods. The structural analysis of these rods was performed using metallography and X-ray diffraction techniques. The X-ray diffraction reveals the two-phase state of the alloy. The phase content in the alloy was shown to vary upon radial forging. Finally, radial forging was found to be a reliable method to achieve the uniform fine-grained structure and high quality of the rod surface.


2020 ◽  
Vol 861 ◽  
pp. 514-518
Author(s):  
Xin Hai Zhao ◽  
Xin Bo Ren ◽  
Xing Chen Sun ◽  
Chao Zheng ◽  
Li Bin Song ◽  
...  

The cone tube is an important part of the circuit connector, which has high requirements for its forming quality. In this paper, the cone tube is taken as the object, the finite element model is established, the radial forging process of the cone tube is simulated, the influence of process parameters such as axial feed and friction on the thickness of the cone tube is studied, and the influence law is analyzed, which has certain reference value for the analysis of the forming law of the radial forging.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Yuzhao Yang ◽  
Lixia Fan ◽  
Cheng Xu ◽  
Xuehua Dong

Abstract This work focused on the mechanical properties of 30SiMn2MoVA high strength steel gun barrel processed by cold radial forging. Three states of the tube made of this material (the state without forging, the as-forged state without annealing, and the as-forged state with annealing) were chosen to compare the axial and circumferential mechanical properties. As a result, anisotropy was found at as-forged state. The circumferential mechanical properties were inferior to the axial. The circumferential yield and tensile strength were about 150 MPa lower than the axial after forging, and the axial elongation was 155% higher than the circumferential. Even after annealing, the circumferential elongation cannot be restored to the same level as the state without forging. The reasons for anisotropy were investigated by the microstructure. The banded structure along the axial direction was observed in the forged barrel. Meanwhile, the crystalline grains of the forged gun barrel had the highest intensity of {111}〈110〉 texture which meant the grains had obvious preferential orientation. The relationship between crystallographic texture and yield strength was analyzed based on the Schmid factor. Additionally, the elastic limit internal pressure of anisotropic gun barrel was calculated, and it was lower than that under isotropic condition.


Sign in / Sign up

Export Citation Format

Share Document