Two phase flow in a wavy core-annular configuration through a vertical pipe: Analytical model for pressure drop in upward flow

2017 ◽  
Vol 126 ◽  
pp. 151-160 ◽  
Author(s):  
Mohammad Ameri ◽  
Nima Tirandaz
Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Author(s):  
Wen Liu ◽  
Bofeng Bai

Swirling gas-liquid two-phase flow patterns and pressure drop in vertical pipes of a large diameter are widely present in practical applications but not well documented in experimental studies. This paper presented an experimental study on gas-liquid two phase flow patterns and pressure drop inside a vertical pipe of 62mm in inner diameter (ID) containing a helical tape insert. Experimental results were obtained in a vertical visualization test section with a length of 7m, liquid mass velocities ranging from 0.3 to 1000 kg/(m2·s), and gas mass velocities from 3.2 to 900kg/(m2·s). Considering the decay of the swirl flow, the swirling flow regime map at different cross sections (z/D = 16, 32 and 64) were concluded, and their effects on the pressure drop were investigated.


2005 ◽  
Vol 2005.80 (0) ◽  
pp. _10-33_-_10-34_
Author(s):  
Yoshihide IMAMURA ◽  
Futoshi YAMADA ◽  
Hideaki SHAKUTSUI

1983 ◽  
Vol 105 (4) ◽  
pp. 700-705 ◽  
Author(s):  
A. G. Ostrogorsky ◽  
R. R. Gay ◽  
R. T. Lahey

A steady-state analytical model has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow structure dependent and allow for the existence of either smooth or wavy liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly.


Sign in / Sign up

Export Citation Format

Share Document