Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow With Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations
Latest Publications


TOTAL DOCUMENTS

91
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791846247

Author(s):  
Zhenping Liu ◽  
James C. Hill ◽  
Rodney O. Fox ◽  
Michael G. Olsen

Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles through rapidly mixing a saturated solution and a non-solvent. Multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide both rapid mixing and the flexibility of inlet flow conditions. Until recently, only micro-scale MIVRs have been demonstrated to be effective in FNP. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in the industry. In the present research, turbulent mixing inside a scaled-up, macro-scale MIVR was measured by stereoscopic particle image velocimetry (SPIV). Reynolds number of this reactor is defined based on the bulk inlet velocity, ranging from 3290 to 8225. It is the first time that the three-dimensional velocity field of a MIVR was experimentally measured. The influence of Reynolds number on mean velocity becomes more linear as Reynolds number increases. An analytical vortex model was proposed to well describe the mean velocity profile. The turbulent characteristics such as turbulent kinematic energy and Reynolds stress are also presented. The wandering motion of vortex center was found to have a significant contribution to the turbulent kinetic energy of flow near the center area.



Author(s):  
Qingming Dong ◽  
Zhentao Wang ◽  
Yonghui Zhang ◽  
Junfeng Wang

In this present study, the VOF (Volume of Fluid) approach is adopted to capture the interface, and CSF (Continuum Surface Force) model to calculate the surface tension, and the governing equations are founded in numerical simulation of evaporating droplets. In this work, a water droplet is assumed to be suspending in high temperature air, and the gravity of a droplet is ignored. During evaporating process of the droplet, the internal circulation flow will be induced due to the gradient of temperature at the droplet surface. The interface flows from high temperature area to low temperature area, which pulls the liquid to produce convective flow inside the droplet called as Marangoni flow. Marangoni flow makes the temperature distribution tend to uniformity, which enhances heat transfer but weakens Marangoni flow in turn. So, during droplet evaporation, the internal flow is not steady.



Author(s):  
Mohsen Modirshanechi ◽  
Kamel Hooman ◽  
Iman Ashtiani Abdi ◽  
Pourya Forooghi

Convection heat transfer in upward flows of supercritical water in triangular tight fuel rod bundles is numerically investigated by using the commercial CFD code, ANSYS Fluent© 14.5. The fuel rod with an inner diameter of 7.6 mm and the pitch-to-diameter ratio (P/D) of 1.14 is studied for mass flux ranging between 550 and 1050 kg/m2s and heat flux of 560 kW/m2 at pressures of 25 MPa. V2F eddy viscosity turbulence model is used and, to isolate the effect of buoyancy, constant values are used for thermo-physical properties with Boussinesq approximation for the density variation with temperature in the momentum equations. The computed Nusselt number normalized by that of the same Reynolds number with no buoyancy against the buoyancy parameter proposed by Jackson and Hall’s criterion. Mentioned results are compared with V2F turbulence model whereas strong nonmonotonic variation of the thermo-physical properties as function of temperature have been applied to the commercial CFD code using user defined function (UDF) technique. A significant decrease in Nusselt number was observed in the range of 10-6<Grq/Reb3.425Prb0.8<5×10-6 before entering a serious heat transfer deterioration regime. Based on an analysis of the shear-stress distribution in the turbulent boundary layer and the significant variation of the specific heat across the turbulent boundary layer, it is found that the same mechanism that leads to impairment of turbulence production in concentric annular pipes is present in triangular lattice fuel rod bundles at supercritical pressure.



Author(s):  
Mustafa Al-Nasser ◽  
Moustafa Elshafei ◽  
Abdelsalam Al-Sarkhi

Multiphase flow measurement is a very challenging issue in process industry. One of the promising approaches for multiphase flow analysis is image processing. Image segmentation is very important step in multiphase flow analysis. Determination of appropriate threshold value is very critical step for correct identification of the liquid and gas phases. There are two main thresholding techniques: Global and Adaptive. Adaptive thresholding is more suitable for multiphase flow case due to it’s adaptability to image conditions such non-uniform illumination and noise. In this work, six adaptive thresholding techniques are examined for the case of wavy flow regime. These algorithms are used to estimate the wave shape and mix region between liquid and gas. In general, the adaptive algorithms are able to compensate for non-uniform illumination and they are able to estimate wave shape and mix region correctly. The execution time for the adaptive techniques is higher than global thresholding technique, but with the availability of new powerful PCs, it will become a minor issue.



Author(s):  
T. Z. Du ◽  
Chun-Ho Liu ◽  
Y. B. Zhao

In urban areas, pollutants are emitted from vehicles then disperse from the ground level to the downstream urban canopy layer (UCL) under the effect of the prevailing wind. For a hypothetical urban area in the form of idealized street canyons, the building-height-to-street-width (aspect) ratio (AR) changes the ground roughness which in turn leads to different turbulent airflow features. Turbulence is considered an important factor for the removal of reactive pollutants by means of dispersion/dilution and chemical reactions. Three values of aspect ratio, covering most flow scenarios of urban street canyons, are employed in this study. The pollutant dispersion and reaction are calculated using large-eddy simulation (LES) with chemical reactions. Turbulence timescale and reaction timescale at every single point of the UCL domain are calculated to examine the pollutant removal. The characteristic mechanism of reactive pollutant dispersion over street canyons will be reported in the conference.



Author(s):  
Marco Vanni

The stresses acting on aggregates smaller than the Kolmogorov length scale in homogeneous isotropic turbulence were estimated by a two-scale numerical simulation. The fluid dynamics at the scales larger than the Kolmogorov length scale was calculated by a Direct Numerical Simulation of the turbulent flow, in which the aggregates were modeled as point particles. Then, we adopted Stokesian Dynamics to evaluate the phenomena governed by the smooth velocity field of the smallest scales. At this level the disordered structure of the aggregates was modeled in detail, in order to take into account the role that the primary particles have in generating and transferring the internal stress. From this result, it was possible to evaluate the internal forces acting at intermonomer contacts and determine the occurrence of breakup as a consequence of the failure of intermonomer bonds. The method was applied to disordered aggregates with isostatic and highly hyperstatic structures, respectively.



Author(s):  
Wei-Tao Wu ◽  
Nadine Aubry ◽  
James F. Antaki ◽  
Mehrdad Massoudi

It is known that in large vessels (whole) blood behaves as a Navier-Stokes (Newtonian) fluid; however, in a vessel whose characteristic dimension (e.g., a diameter in the range of 20 to 500 microns) is about the same size as the characteristic size of the blood cells, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, the Fahraeus effect, the plasma-skimming, etc.. Using the framework of mixture theory an Eulerian-Eulerian two phase model is applied to model blood flow, where the plasma is treated as Newtonian fluid and the RBCs are treated as shear thinning fluid.[5]



Author(s):  
Jingsen Ma ◽  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

Cavitating bubbly flows are encountered in many engineering problems involving propellers, pumps, valves, ultrasonic biomedical applications, … etc. In this contribution an OpenMP parallelized Euler-Lagrange model of two-phase flow problems and cavitation is presented. The two-phase medium is treated as a continuum and solved on an Eulerian grid, while the discrete bubbles are tracked in a Lagrangian fashion with their dynamics computed. The intimate coupling between the two description levels is realized through the local void fraction, which is computed from the instantaneous bubble volumes and locations, and provides the continuum properties. Since, in practice, any such flows will involve large numbers of bubbles, schemes for significant speedup are needed to reduce computation times. We present here a shared-memory parallelization scheme combining domain decomposition for the continuum domain and number decomposition for the bubbles; both selected to realize maximum speed up and good load balance. The Eulerian computational domain is subdivided based on geometry into several subdomains, while for the Lagrangian computations, the bubbles are subdivided based on their indices into several subsets. The number of fluid subdomains and bubble subsets are matched with the number of CPU cores available in a share-memory system. Computation of the continuum solution and the bubble dynamics proceeds sequentially. During each computation time step, all selected OpenMP threads are first used to evolve the fluid solution, with each handling one subdomain. Upon completion, the OpenMP threads selected for the Lagrangian solution are then used to execute the bubble computations. All data exchanges are executed through the shared memory. Extra steps are taken to localize the memory access pattern to minimize non-local data fetch latency, since severe performance penalty may occur on a Non-Uniform Memory Architecture multiprocessing system where thread access to non-local memory is much slower than to local memory. This parallelization scheme is illustrated on a typical non-uniform bubbly flow problem, cloud bubble dynamics near a rigid wall driven by an imposed pressure function.



Author(s):  
Adèle Poubeau ◽  
Roberto Paoli ◽  
Daniel Cariolle

This paper focuses on two decisive steps towards Large Eddy Simulation of a solid rocket booster jet. First, three-dimensional Large Eddy Simulations of a non-reactive booster jet including the nozzle were obtained at flight conditions of 20 km of altitude. A particularly long computational domain (400 nozzle exit diameters in the jet axial direction) was simulated, thanks to an innovative local time-stepping method via coupling multi instances of a fluid solver. The dynamics of the jet is analysed and comparison of the results with previous knowledge validates the simulations and confirms that this computational setup can be applied for Large Eddy Simulations of a reactive booster jet. The second part of this paper details the implementation of a simple method to study the hot plume chemistry. Despite its limitations, it is accurate enough to observe the various steps of the chemical mechanism and assess the effect of uncertainties of the rate parameters on chlorine reactions. It was also used to reduce the set of chemical reactions into a short scheme involving a minimum of species and having a limited impact on the physical time step of the Large Eddy Simulations.



Author(s):  
Holger Grosshans ◽  
Matthias Griesing ◽  
Srikanth R. Gopireddy ◽  
Werner Pauer ◽  
Hans-Ulrich Moritz ◽  
...  

This paper presents a combined experimental and numerical study of the evaporation and solid layer formation of a single bi-component mannitol-water droplet in air. For spherically symmetric droplets, the problem is described mathematically by the unsteady, one-dimensional conservation equations of mass and energy. The effect of the formation of a solid layer at the droplet surface on the droplet evaporation and thermal diffusion rate is included in the present approach. The simulations are validated by comparison with experiments using acoustically levitated droplets. The study includes initial droplet diameters varying from 350 to 450 μm, gas temperatures ranging from 80 to 120 °C, and the initial mannitol mass fraction inside the droplet varies from 0.05 to 0.15. The numerical results are analyzed to identify the occurrence of solid layer formation, and the temporal evolutions of both the droplet size and mass are presented. A parameter study of the initial gas temperature, the initial droplet size, and the initial mannitol mass fraction inside the droplet on droplet evaporation and solid layer formation is presented. The present model accurately captures the initial stages of droplet drying under all conditions investigated.



Sign in / Sign up

Export Citation Format

Share Document