A non-Fourier heat flux approach to model MHD Oldroyd-B fluid flow due to bidirectional stretching surface

2017 ◽  
Vol 131-132 ◽  
pp. 146-154 ◽  
Author(s):  
S. Hina ◽  
Maimoona Munir ◽  
M. Mustafa
Author(s):  
Arif Hussain ◽  
Muhammad Yousaf Malik ◽  
Mair Khan ◽  
Taimoor Salahuddin

Purpose The purpose of current flow configuration is to spotlights the thermophysical aspects of magnetohydrodynamics (MHD) viscoinelastic fluid flow over a stretching surface. Design/methodology/approach The fluid momentum problem is mathematically formulated by using the Prandtl–Eyring constitutive law. Also, the non-Fourier heat flux model is considered to disclose the heat transfer characteristics. The governing problem contains the nonlinear partial differential equations with appropriate boundary conditions. To facilitate the computation process, the governing problem is transmuted into dimensionless form via appropriate group of scaling transforms. The numerical technique shooting method is used to solve dimensionless boundary value problem. Findings The expressions for dimensionless velocity and temperature are found and investigated under different parametric conditions. The important features of fluid flow near the wall, i.e. wall friction factor and wall heat flux, are deliberated by altering the pertinent parameters. The impacts of governing parameters are highlighted in graphical as well as tabular manner against focused physical quantities (velocity, temperature, wall friction factor and wall heat flux). A comparison is presented to justify the computed results, it can be noticed that present results have quite resemblance with previous literature which led to confidence on the present computations. Originality/value The computed results are quite useful for researchers working in theoretical physics. Additionally, computed results are very useful in industry and daily-use processes.


2014 ◽  
Vol 62 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Tasawar Hayat ◽  
Sabir Ali Shehzad ◽  
Ahmed Alsaedi

Abstract This paper concentrates on the mathematical modelling for three-dimensional flow of an incompressible Oldroyd- B fluid over a bidirectional stretching surface. Mathematical formulation incorporates the effect of internal heat source/sink. Two cases of heat transfer namely the prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are considered. Computations for the governing nonlinear flow are presented using homotopy analysis method. Comparison of the present analysis is shown with the previous limiting result. The obtained results are discussed by plots of interesting parameters for both PST and PHF cases. We examine that an increase in Prandtl number leads to a reduction in PST and PHF. It is noted that both PST and PHF are increased with an increase in source parameter. Further we have seen that the temperature is an increasing function of ratio parameter


2018 ◽  
Vol 39 (8) ◽  
pp. 1173-1186 ◽  
Author(s):  
T. Hayat ◽  
S. Qayyum ◽  
M. Imtiaz ◽  
A. Alsaedi

2013 ◽  
Vol 44 (8) ◽  
pp. 687-702 ◽  
Author(s):  
Tasawar Hayat ◽  
Sabir A. Shehzad ◽  
Muhammad Qasim ◽  
F. Alsaadi ◽  
Ahmed Alsaedi

Sign in / Sign up

Export Citation Format

Share Document