scholarly journals Three-dimensional flow of an Oldroyd-B fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux

2014 ◽  
Vol 62 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Tasawar Hayat ◽  
Sabir Ali Shehzad ◽  
Ahmed Alsaedi

Abstract This paper concentrates on the mathematical modelling for three-dimensional flow of an incompressible Oldroyd- B fluid over a bidirectional stretching surface. Mathematical formulation incorporates the effect of internal heat source/sink. Two cases of heat transfer namely the prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are considered. Computations for the governing nonlinear flow are presented using homotopy analysis method. Comparison of the present analysis is shown with the previous limiting result. The obtained results are discussed by plots of interesting parameters for both PST and PHF cases. We examine that an increase in Prandtl number leads to a reduction in PST and PHF. It is noted that both PST and PHF are increased with an increase in source parameter. Further we have seen that the temperature is an increasing function of ratio parameter

2012 ◽  
Vol 17 (1) ◽  
pp. 47-59 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Awais ◽  
Ambreen Safdar ◽  
Awatif A. Hendi

The unsteady three-dimensional flow of couple stress fluid over a stretched surface is investigated. Analysis has been performed in the presence of mass transfer and chemical reaction. Nonlinear flow analysis is computed by a homotopic approach. Plots are presented and analyzed for the various parameters of interest. A comparative study with existing solutions in a limiting sense is made.


1976 ◽  
Vol 98 (2) ◽  
pp. 208-212 ◽  
Author(s):  
G. M. Harpole ◽  
I. Catton

The laminar boundary layer equations for free convection over bodies of arbitrary shape (i.e., a three-term series expansion) and with arbitrary surface heat flux or surface temperature are solved in local Cartesian coordinates. Both two-dimensional bodies (e.g., horizontal cylinders) and axisymmetric bodies (e.g., spheres) with finite radii of curvature at their stagnation points are considered. A Blasius series expansion is applied to convert from partial to ordinary differential equations. An additional transformation removes the surface shape dependence and the surface heat flux or surface temperature dependence of the equations. A second-order-correct, finite-difference method is used to solve the resulting equations. Tables of results for low Prandtl numbers are presented, from which local Nusselt numbers can be computed.


Sign in / Sign up

Export Citation Format

Share Document