Theoretical and numerical analysis of the creep crack initiation time considering the constraint effects for pressurized pipelines with axial surface cracks

2018 ◽  
Vol 141 ◽  
pp. 262-275 ◽  
Author(s):  
Dongquan Wu ◽  
Hongyang Jing ◽  
Lianyong Xu ◽  
Lei Zhao ◽  
Yongdian Han
2017 ◽  
Vol 114 ◽  
pp. 98-109 ◽  
Author(s):  
Lianyong Xu ◽  
Xingfu Zhang ◽  
Lei Zhao ◽  
Yongdian Han ◽  
Hongyang Jing

Author(s):  
Catrin M. Davies ◽  
Robert C. Wimpory ◽  
David W. Dean ◽  
Kamran M. Nikbin

High temperature crack growth in weldments is of great practical concern in high temperature plant components. Cracking typically occurs in the heat affected zone (HAZ) and often propagates into adjacent parent material (PM). Recently, the importance of constraint effects on creep crack growth behaviour has been recognised and creep crack growth testing on a range of specimen geometries has been performed. Experimental crack growth testing has been performed at 550 °C on a range of fracture specimens using sections taken from a non-stress-relieved 316 steel weldment. These specimens include the compact tension, C(T), middle tension, M(T) and circumferentially cracked bar, CCB, geometries. Results are presented from two long-term creep crack growth (CCG) tests performed on M(T) weldment specimens and these are compared with available data on C(T) and CCB weldment specimens together with both long and short term tests on parent material for a range of specimen geometries. The creep crack initiation (CCI) and growth (CCG) behaviour from these tests has been analysed in terms of the C* parameter. As high levels of residual stress exist in non-stress-relieved weldments, the residual stresses remaining in the weldment specimens have therefore been quantified using the neutron diffraction technique. Long-term (low-load) tests are required on PM specimen to observe specimen constraint effects in 316 steel at 550 °C. When interpreted in terms of the C* parameter the CCG behavior of PM and Weldment materials follow the same trendline on low constraint geometries. However, significant difference is observed in the CCG behavior of PM and weldments on the high constraint C(T) geometry. Long term tests on C(T) specimen weldments are required to confirm the results found.


Author(s):  
Y. Hioe ◽  
S. Kalyanam ◽  
G. Wilkowski ◽  
S. Pothana ◽  
J. Martin

A series of pipe tests with circumferential surface cracks has been conducted along with fracture toughness tests using single-edge notch tension (SENT) specimens having similar crack depths and crack orientations as the surface-cracked pipes. This paper presents observation of measured fracture toughness variation due to the crack depth and discusses the effect of constraint on the material resistance to fracture. Crack-tip-opening displacement (CTOD) measurements were obtained with the use of a dual clip-gauge mounted on both the SENT specimens and center of the surface-cracks in the pipes. CTOD was obtained at both the crack initiation and during the crack growth through the ligament. CTOD is a direct measure of the material toughness in the pipe and SENT tests. CTOD at crack initiation and during crack growth can also be related to the material J-Resistance (J-R) curve. Commonly, the material resistance is assumed to be the same for all circumferential surface-crack geometries in a surface-cracked pipe fracture mechanics analyses. However, based on experimental observations on a series of recently conducted surface-cracked pipe tests, the CTOD at the center of the surface crack at the start of ductile tearing and maximum moment changed with the depth of the surface crack. This is believed to be a constraint effect on plasticity in the ligament which depends on crack depth. The CTOD values at crack initiation were decreasing linearly with crack depth. This linear decrease in CTOD trend with flaw depth was also observed in SENT tests. More importantly, the decrease in CTOD with surface crack depth was significant enough that the failure mode changed from being limit-load to elastic-plastic fracture even in relatively small-diameter TP304 stainless steel pipe tests. This toughness drop explains why the Net-Section-Collapse (limit-load) analysis overpredicted the maximum moment for some crack geometries, and why the deeper surface cracks tore through the pipe thickness at moments below that predicted by the NSC analysis for a through-wall crack of the same circumferential length. An “Apparent NSC Analysis” was developed in a companion paper to account for the changing toughness with crack depth [1]. Finally, this same trend in decreasing toughness with flaw depth is apparent in surface-cracked flat plates [2] and axial surface flaws in pipes [3]. The leak-before-break behavior for axial surface cracks is also not explained by numerical calculations of the crack-driving force when assuming the toughness is constant for all surface cracks and the through-wall cracks, but the change in toughness with surface flaw depth explains this behavior. Previously, axial flaw empirical limit-load solution was developed by Maxey and Kiefner [4], and is consistent with the observations from this paper.


Author(s):  
Seung-Ho Lee ◽  
Hyun-Woo Jung ◽  
Yun-Jae Kim ◽  
Kamran Nikbin ◽  
Robert A. Ainsworth

Abstract In this study, to qualify the constraint effect on creep crack initiation, the correlation analysis between proposed constraint parameter Q’ using time-dependent creep crack-tip stress and creep crack initiation time variable Ai was performed. Ai implies the influence of constraint effect on creep crack initiation. The procedure to calculate the Ai and the Q’-parameter was presented. To evaluate various status of constraint effect, creep crack growth tests for twenty-one compact tension specimens of Type 316H stainless steel at 550°C were investigated. The results of correlation analysis explain the reason for the different initiation time at the same C* level in respect of constraint effect.


Sign in / Sign up

Export Citation Format

Share Document